

如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
基于神经网络的非线性大气修正实现红外目标辐射测量(英文) BasedonNeuralNetworksNonlinearAtmosphereCorrectionforInfraredTargetRadianceMeasurement Introduction: Infraredimagingiswidelyusedinremotesensingandsurveillancesystems.Accuratelymeasuringthetargetradianceiscrucialformanyapplicationssuchasobjectrecognitionandtracking.However,infraredimagingishighlysensitivetotheatmosphere'spresence,whichaffectsthemeasurements'accuracy.Theatmosphere'simpactisparticularlystrongonlong-wavelengthinfraredradiation,whichisusedforthermalimaging.Toaddressthisissue,atmosphericcorrectionmethods,suchastheMODTRANmodel,canbeusedtoobtainaccuratetargetradiance.However,thesemethodsrequiresignificantcomputationaltimeandresources,whichmakesthemimpracticalinreal-timeapplications.Inthispaper,weproposeaneuralnetwork-basedmethodtoachievefastandaccuratetargetradiancemeasurementsbyaccountingforatmosphericeffects. Methodology: Weproposeafeed-forwardneuralnetworkarchitecturethattakesrawatmosphericdataandtargetradianceasinputandpredictsthetruetargetradiance.Theatmosphericdataincludestemperature,watervaporcontent,andairpressure,whicharethemajorfactorsinfluencingradiancemeasurements.Theneuralnetworkarchitectureconsistsofthreemaincomponents,namelytheinputlayer,hiddenlayer,andoutputlayer.Theinputlayerconsistsoftherawatmosphericdataandtargetradiancevaluesasinputs.Thehiddenlayercontainsseveralneuronsthatapplynon-lineartransformationsontheinputdata.Theoutputlayerproducesthepredictedtargetradiancevalue. Thetrainingphaseinvolvesusingalargedatasetofatmosphericandtargetradiancevaluestotrainthenetwork.Theneuralnetworklearnstomodelthecomplexrelationshipbetweentherawatmosphericdataandthetruetargetradiance.Duringthetestingphase,thenetworkcanquicklypredictthetargetradiancevalueforanygivenatmosphericconditions,therebyprovidinganefficientsolutionforreal-timeapplications. Results: Weperformedasetofexperimentstoevaluatetheeffectivenessoftheproposedmethod.Thetrainingdatasetconsistedof100,000samples,whilethetestingdatasetcomprised10,000samples.Theatmosphe

快乐****蜜蜂
实名认证
内容提供者


最近下载