

如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
基于遗传算法-深度神经网络的分布式光纤监测工作面矿压预测 Title:PerformancePredictionofMining-inducedPressureatDistributedFiber-opticMonitoringWorkingFaceBasedonGeneticAlgorithm-DeepNeuralNetwork Abstract: Mining-inducedpressureinundergroundcoalminingposesasignificantthreattothesafetyandstabilityofworkingfaces.Tomitigatethisrisk,accurateandtimelypredictionofmining-inducedpressureiscrucial.Inthispaper,weproposeanovelapproachcombininggeneticalgorithm(GA)anddeepneuralnetwork(DNN)topredictthemining-inducedpressureatdistributedfiber-opticmonitoringworkingfaces.TheGAisutilizedtooptimizetheDNNmodelinordertoimprovethepredictionaccuracy. 1.Introduction: Mining-inducedpressureatworkingfacesisanimportantfactoraffectingthesafetyandstabilityofundergroundcoalmining.Accuratepredictionofmining-inducedpressurecanhelpengineerstakeproactivemeasurestopreventpotentialrisksandensurethesmoothprogressofminingoperations.Traditionalpredictionmodelsoftenstruggletocapturethecomplexnon-linearrelationshipbetweeninputparametersandmining-inducedpressure.Toaddressthischallenge,weproposeahybridapproachthatintegratesGAandDNN. 2.LiteratureReview: Previousstudieshaveemployedvarioustechniquestopredictmining-inducedpressure,includingtraditionalstatisticalmodels,machinelearningmethods,andnumericalmodeling.However,thesemethodshavelimitationsinaccuratelycapturingthenon-linearrelationshipsinthedataoraccuratelypredictingdynamicchangesinmining-inducedpressure.Recentadvancementsindeeplearningtechniques,particularlyDNNs,haveshownpromisingresultsinvariousfields.However,theoptimizationprocessofDNNsisoftentime-consumingandcomputationallyexpensive.Inthisstudy,weproposetheuseofGAtooptimizetheDNNmodelforefficientpredictionofmining-inducedpressure. 3.Methodology: 3.1DataCollectionandPre-processing: Acomprehensivedatasetofdistributedfiber-opticmonitoringdata,includingstress,strain,temperature,andotherrelevantparameters,wascollectedfromaworkingface.Thedatawaspre-processedtoremoveoutliersandnormalizetheinputparameters. 3.2GeneticAlgorithmOptimization

快乐****蜜蜂
实名认证
内容提供者


最近下载