

如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
改进神经网络的电子音乐辨识研究 Title:EnhancingElectronicMusicIdentificationusingDeepNeuralNetworks Abstract: Musicidentificationisafundamentaltaskindigitalaudioprocessingandhasbecomeparticularlychallengingintheeraofelectronicmusic,whichoftenlackstraditionalmusicalstructuresandincorporatescomplexsoundsynthesizersandeffects.Thispaperaimstoexplorehowdeepneuralnetworks(DNNs)canbeusedtoimprovetheaccuracyandefficiencyofelectronicmusicidentification.WeinvestigatevariousarchitecturesandtrainingtechniquestoenhancetheperformanceofDNNmodels,andpresentanempiricalevaluationoftheireffectiveness.TheresultsdemonstratethepotentialofDNNsinadvancingelectronicmusicidentificationresearch. 1.Introduction Electronicmusicischaracterizedbyitswiderangeofsoundsandintricateaudioprocessingtechniques,makingitdifficulttoidentifyandcategorizeaccurately.Traditionalmusicidentificationmethodsrelyheavilyonmanualfeatureextraction,whichcanbetime-consumingandpronetoerrors.Theemergenceofdeeplearningtechniques,specificallyDNNs,hasrevolutionizedthefieldbyautomatingfeatureextractionandmodelingcomplexrelationshipswithinthedata.Inthispaper,wediscussthepotentialofDNNsinimprovingelectronicmusicidentification. 2.LiteratureReview Wereviewexistingresearchonelectronicmusicidentification,highlightingthelimitationsoftraditionaltechniquesandintroducingrecentadvancementsindeeplearning.WediscussrelevantstudiesthathaveutilizedDNNsforaudioprocessingtasks,suchasmusicgenreclassificationandmusicrecognition,anddrawinspirationfromtheirmethodologiesandresults. 3.Methodology WeoutlineourproposedmethodologyforelectronicmusicidentificationusingDNNs.ThisincludesselectinganappropriateDNNarchitecture,preprocessingtheaudiodata,anddesigninganeffectivetrainingscheme.WediscusspopularDNNarchitecturessuchasConvolutionalNeuralNetworks(CNNs)andRecurrentNeuralNetworks(RNNs)andtheirsuitabilityforthespecifictaskofelectronicmusicidentification. 4.DataCollectionandPreprocessing Ahigh-qualityanddiversedatasetiscrucialforthetrainingandevaluationofDNNmodels.Wedescr

快乐****蜜蜂
实名认证
内容提供者


最近下载