

如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
一种新的基于Gabor小波的非监督纹理分割方法 Title:ANovelUnsupervisedTextureSegmentationMethodBasedonGaborWavelets Abstract: Texturesegmentationplaysavitalroleinvariouscomputervisionapplications.ThispaperpresentsanovelunsupervisedtexturesegmentationmethodbasedonGaborwavelets.TheGaborwavelettransformiswidelyusedfortextureanalysisduetoitsabilitytocapturebothspatialandfrequencyinformation.Ourproposedmethodcombinesmulti-channelGaborfeatures,aself-organizingmap(SOM),andafuzzyC-meansclusteringalgorithmtoachieveefficientandaccuratetexturesegmentation.Experimentalresultsdemonstratetheeffectivenessandrobustnessoftheproposedmethod. Keywords:Texturesegmentation,Gaborwavelets,unsupervisedlearning,self-organizingmap,fuzzyC-means 1.Introduction Textureisanessentialpropertyofimagesthatcontainsrepetitivepatternsorstructures,whichareoftenchallengingtosegmentaccurately.Texturesegmentationaimstodivideanimageintodistinctregionsbasedonthesepatternsorstructures.Itplaysacrucialroleinvariouscomputervisiontasks,includingobjectrecognition,textureclassification,andimageretrieval.Supervisedtexturesegmentationmethodsusuallyrequirealargeamountofmanuallylabeledtrainingdata,whichcanbetime-consumingandlabor-intensive.Inthispaper,weproposeanovelunsupervisedtexturesegmentationmethodthatleveragesGaborwaveletstoovercometheselimitations. 2.GaborWaveletsforTextureAnalysis Gaborwaveletsarewidelyusedintextureanalysisduetotheirabilitytocapturebothspatialandfrequencyinformationsimultaneously.TheGaborwavelettransformdecomposesanimageintodifferentfrequencysub-bandsandextractslocalorientationinformation.TheresultingGaborfeaturesaresensitivetolocaltexturepropertiesandareeffectiveincapturingtexturedetails.ByapplyingGaborwaveletstotexturesegmentation,wecanbettercapturethetexturepatternsandstructuresofanimage. 3.ProposedMethod Ourproposedmethodconsistsofthreestages:featureextraction,self-organizingmap(SOM)training,andfuzzyC-meansclustering. 3.1FeatureExtraction Inthisstage,wecomputemulti-channelGaborfeaturesfromtheinputimage.TheGaborfi

快乐****蜜蜂
实名认证
内容提供者


最近下载