




如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
深圳明德外语实验学校八年级上册期末数学试卷 一、选择题 1、下列图形中,既是轴对称图形又是中心对称图形的是() A. B. C. D. 2、科学家可以使用冷冻显微术以高分辨率测定溶液中的生物分子结构,使用此技术测定细菌蛋白结构的分辨率达到0.22纳米,也就是0.00000000022米.将0.00000000022用科学记数法表示为() A.0.22×10﹣8 B.0.22×10﹣9 C.22×10﹣10 D.22×10﹣11 3、下列运算中,正确的是() A. B. C. D. 4、若分式的值为0,则x的值为() A. B.2 C.2或 D.1 5、下列式子从左到右的变形是因式分解的是() A. B. C. D. 6、分式﹣可变形为() A.﹣ B.﹣ C. D. 7、如图,在△ACD和△BCE中,DA⊥AB,EB⊥AB,点C是AB的中点,添加下列条件后,不能判定△ACD≌△BCE的是() A.CD=CE B.AD=BE C.ADBE D.∠D=∠E 8、若关于x的分式方程有增根,则m的值为() A.2 B. C. D.3 9、如图:∠DAE=∠ADE=15°,DEAB,DF⊥AB,若AE=8,则DF等于() A.10 B.7 C.5 D.4 二、填空题 10、如图,正方形A、B的边长分别为a和b,现将B放在A的内部得图①,将A、B并列放置后构造新的正方形得图②.则①②两图中阴影部分的面积之和为() A.2ab B. C. D. 11、若分式的值为0,则x的值为____________. 12、点P关于y轴的对称点P′的坐标是(4,-3),则点P的坐标是_________. 13、已知a、b为实数,且,设,则M、N的大小关系是M________N(填=、>、<、≥、≤). 14、已知3m=6,9n=2,则32m-4n+1的值为_________. 15、如图,在中,的平分线与的垂直平分线相交于点O,沿折叠,点C与点O恰好重合.则___________. 16、若x2+mx+4是完全平方式,则m=_____________. 17、已知___________. 18、如图,在平面直角坐标系中,矩形OABC的两边分别在x轴和y轴上,OA=10cm,OC=6cm,F是线段OA上的动点,从点O出发,以1cm/s的速度沿OA方向作匀速运动,点Q在线段AB上.已知A,Q两点间的距离是O,F两点间距离的a倍,若用(a,t)表示经过时间t(x)时,△OCF,△FAQ,△CBQ中有两个三角形全等,请写出(a,t)的所有可能情况___________________. 三、解答题 19、因式分解: (1) (2). 20、先化简,再求值:÷-(+1),其中,x=. 21、如图,点B,E,C,F在一条直线上,∠B=∠DEF,∠ACB=∠F,BE=CF.求证:∠A=∠D. 22、如图(1)所示的图形,像我们常见的学习用品一圆规,我们常把这样的图形叫做“规形图”. (1)观察“规形图”,试探究与、、之间的数量关系,并说明理由; (2)请你利用此结论,解决以下两个问题: ①如图(2),把一个三角尺放置在上,使三角尺的两条直角边,恰好经过点,,若,则______; ②如图(3),平分,平分,若,,求的度数. 23、一辆汽车开往距离出发地180km的目的地,出发后第一小时内按原计划的速度匀速行驶,一小时后以原来速度的1.5倍匀速行驶,并比原计划提前40min到达目的地. (1)原计划的行驶速度是多少? (2)这辆汽车实际花费多长时间到达了目的地. 24、把代数式通过配凑等手段,得到局部完全平方式,再进行有关运算和解题,这种解题方法叫做配方法. 如:①用配方法分解因式:a2+6a+8, 解:原式=a2+6a+8+1-1=a2+6a+9-1 =(a+3)2-12= ②M=a2-2a-1,利用配方法求M的最小值. 解: ∵(a-b)2≥0,∴当a=1时,M有最小值-1、 请根据上述材料解决下列问题: (1)用配方法因式分解:. (2)若,求M的最小值. (3)已知x2+2y2+z2-2xy-2y-4z+5=0,求x+y+z的值. 25、如图1,在平面直角坐标系中,直线AB与轴交于点A、与轴交于点B,且∠ABO=45°,A(-6,0),直线BC与直线AB关于轴对称. (1)求△ABC的面积; (2)如图2,D为OA延长线上一动点,以BD为直角边,D为直角顶点,作等腰直角△BDE,求证:AB⊥AE; (3)如图3,点E是轴正半轴上一点,且∠OAE=30°,AF平分∠OAE,点M是射线AF上一动点,点N是线段AO上一动点,判断是否存在这样的点M,N,使OM+NM的值最小?若存在,请写出其最小值,并加以说明. 一、选择题 1、B 【解析】B 【分析】根据

安双****文章
实名认证
内容提供者


最近下载