

如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
基于改进的FasterR-CNN的古建筑地砖缺陷检测 Title:DetectingDefectsinAncientArchitectureFloorTilesbasedonImprovedFasterR-CNN Abstract: Withtheincreasingattentiononthepreservationofancientarchitecture,thedetectionofdefectsinhistoricfloortileshasbecomeacrucialtask.Inthispaper,weproposeanimprovedFasterR-CNNmodelfortheautomaticdetectionoffloortiledefectsinancientarchitecture.Theproposedmodelnotonlyachieveshigheraccuracybutalsoenhancesthedetectionspeed.Throughempiricalexperiments,ourmodeldemonstratessuperiorperformanceinidentifyingvarioustypesofdefects,providingavaluabletoolforthepreservationandmaintenanceofancientarchitecture. 1.Introduction Ancientarchitecturepossesseshistorical,cultural,andartisticvaluesthatmustbepreservedforfuturegenerations.Thefloortilesusedinancientarchitecturearesubjectedtovariousdefectsovertime,suchascracks,colorfading,andmissingtiles.Detectingthesedefectsmanuallyisalabor-intensiveandtime-consumingtask.Hence,theneedforanautomatedsystemtodetectandclassifyfloortiledefectsisimperative.Inthispaper,weproposeanimprovedFasterR-CNNmodeltoaddressthisissue. 2.RelatedWork Previousstudieshaveexploredtheuseofdeeplearningmodelsforobjectdetectiontasks.TheFasterR-CNNisknownforitsexcellentperformanceinobjectdetection,makingitapplicableinvariousdomains.However,theoriginalFasterR-CNNmodelmaynotachievesatisfactoryresultswhenappliedtoancientarchitecturefloortiledefectdetectionduetothespecificcharacteristicsofthesedefects.Hence,weproposeseveralimprovementstoenhancethemodel'sperformance. 3.Methodology 3.1DataCollectionandPreprocessing Totrainandevaluatetheproposedmodel,wecollectedadatasetofimagescontainingdifferenttypesoffloortiledefectsfoundinancientarchitecture.Eachimagewaslabeledwithgroundtruthannotationstodenotethepresenceandlocationofdefects.Thedatasetwassplitintotrainingandtestingsets. 3.2ImprovedFasterR-CNNModel WeproposeseveralmodificationstothestandardFasterR-CNNarchitecturetooptimizeitforfloortiledefectdetection.First,weincorporatearegionproposalnetwork(RPN)withanchorboxesspec

快乐****蜜蜂
实名认证
内容提供者


最近下载