

如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
基于词性与词序的相关因子训练的word2vec改进模型 摘要 Word2Vec是一种常用的词向量表示模型,但是其存在一些问题,例如不能捕捉词汇多义性和语法结构等。本文提出了一个基于词性与词序的相关因子训练的word2vec改进模型。该模型使用了词性和词序信息来训练词向量,并使用了一个新的损失函数来优化模型。实验结果表明,该模型在多义性和语法结构等方面比传统的Word2Vec模型表现更好。 关键词:Word2Vec;改进模型;词向量;词性;词序;多义性;语法结构 Introduction Word2Vecisapopularmodelforrepresentingwordsasvectors,whichhasbeenwidelyusedinvariousnaturallanguageprocessingtasks,suchaslanguagemodeling,textclassification,andsoon.However,thetraditionalWord2Vecmodelhassomelimitations,suchasambiguouswordmeaningsandlackofsyntacticstructure.Inordertoaddresstheseshortcomings,weproposeaWord2Vecimprovementmodelbasedonrelatedfactorsofpart-of-speechandwordorder. RelatedWork TherehavebeenmanystudiesonimprovingtheWord2Vecmodel.SomeresearchersproposetousedifferentwindowsizesorcombinationsofdatatoimprovetheperformanceofWord2Vec.Othersaddmoretrainingdataoradaptthemodeltospecifictasks.InthecontextofimprovingtheWord2Vecmodel,ourapproachistouserelatedfactorssuchaspart-of-speechandwordordertotrainwordvectors. Methodology OurimprovementmodelforWord2Vecisbasedonthefollowingkeyassumptions: 1.Therelatedfactorssuchaspart-of-speechandwordorderhaveasignificantimpactonthecontextofaword. 2.Byutilizingtheserelatedfactors,moreaccurateandmeaningfulwordvectorscanbeobtained. Toinvestigatetheseassumptions,weproposeanewtrainingmethodthatusespart-of-speechandwordordersequenceinformationtooptimizetheWord2Vecmodel.Specifically,ourmodelconsistsoftwomaincomponents:apre-processingstepandanewtrainingmethodbasedonamodifiedlossfunction. Forthepre-processingstep,weuseanaturallanguageprocessing(NLP)toolkittoperformpart-of-speechtaggingandwordsegmentationonthecorpus.TheNLPtoolkitweuseistheStanfordCoreNLPtoolkit,whichprovidesanefficientandaccuratewaytoextractPOStagsandwordsegmentsfromtext. Inthenewtrainingmethod,wemodifytheWord2Veclossfunctiontoincludetherelatedfactorsofpart-of-speechandwordorder.Themodifiedlossfunctionisdefinedasfollows: 1.Foragivenwordwinagivencontextc,letw'bethewordwiththesamepart-of-speechandwordorderasw,butdiffer

快乐****蜜蜂
实名认证
内容提供者


最近下载