初中数学竞赛标准教程及练习14:经验归纳法.doc 立即下载
2024-12-13
约2.5千字
约4页
0
59KB
举报 版权申诉
预览加载中,请您耐心等待几秒...

初中数学竞赛标准教程及练习14:经验归纳法.doc

初中数学竞赛标准教程及练习14:经验归纳法.doc

预览

在线预览结束,喜欢就下载吧,查找使用更方便

10 金币

下载文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开


中考数学复习资料,精心整编吐血推荐,如若有用请打赏支持,感激不尽!
初中数学竞赛精品标准教程及练习(14)
经验归纳法

一、内容提要
1.通常我们把“从特殊到一般”的推理方法、研究问题的方法叫做归纳法。
通过有限的几个特例,观察其一般规律,得出结论,它是一种不完全的归纳法,也叫做经验归纳法。例如
①由(-1)2=1,(-1)3=-1,(-1)4=1,……,
归纳出-1的奇次幂是-1,而-1的偶次幂是1。
②由两位数从10到99共90个(9×10),
三位数从100到999共900个(9×102),
四位数有9×103=9000个(9×103),
…………
归纳出n位数共有9×10n-1(个)
由1+3=22,1+3+5=32,1+3+5+7=42……
推断出从1开始的n个連续奇数的和等于n2等。
可以看出经验归纳法是获取新知识的重要手段,是知识攀缘前进的阶梯。
2.经验归纳法是通过少数特例的试验,发现规律,猜想结论,要使规律明朗化,必须进行足夠次数的试验。
由于观察产生的片面性,所猜想的结论,有可能是错误的,所以肯定或否定猜想的结论,都必须进行严格地证明。(到高中,大都是用数学归纳法证明)

二、例题
平面内n条直线,每两条直线都相交,问最多有几个交点?
解:两条直线只有一个交点,12
第3条直线和前两条直线都相交,增加了2个交点,得1+23
第4条直线和前3条直线都相交,增加了3个交点,得1+2+3
第5条直线和前4条直线都相交,增加了4个交点,得1+2+3+4
………
第n条直线和前n-1条直线都相交,增加了n-1个交点
由此断定n条直线两两相交,最多有交点1+2+3+……n-1(个),
这里n≥2,其和可表示为[1+(n+1)]×,即个交点。




例2.符号n!表示正整数从1到n的連乘积,读作n的阶乘。例如
5!=1×2×3×4×5。试比较3n与(n+1)!的大小(n是正整数)
解:当n=1时,3n=3,(n+1)!=1×2=2
当n=2时,3n=9,(n+1)!=1×2×3=6
当n=3时,3n=27,(n+1)!=1×2×3×4=24
当n=4时,3n=81,(n+1)!=1×2×3×4×5=120
当n=5时,3n=243,(n+1)!=6!=720……
猜想其结论是:当n=1,2,3时,3n>(n+1)!,当n>3时3n<(n+1)!。
例3求适合等式x1+x2+x3+…+x2003=x1x2x3…x2003的正整数解。
分析:这2003个正整数的和正好与它们的积相等,要确定每一个正整数的值,我们采用经验归纳法从2个,3个,4个……直到发现规律为止。
解:x1+x2=x1x2的正整数解是x1=x2=2
x1+x2+x3=x1x2x3的正整数解是x1=1,x2=2,x3=3
x1+x2+x3+x4=x1x2x3x4的正整数解是x1=x2=1,x3=2,x4=4
x1+x2+x3+x4+x5=x1x2x3x4x5的正整数解是x1=x2=x3=1,x4=2,x5=5
x1+x2+x3+x4+x5+x6=x1x2x3x4x5x6的正整数解是x1=x2=x3=x4=1,x5=2,x6=6
…………
由此猜想结论是:适合等式x1+x2+x3+…+x2003=x1x2x3…x2003的正整数解为x1=x2=x3=……=x2001=1,x2002=2,x2003=2003。
三、练习14
除以3余1的正整数中,一位数有__个,二位数有__个,三位数有__个,n位数有____个。
十进制的两位数可记作10a1+a2,三位数记作100a1+10a2+a3,四位数记作____,n位数___记作______
由13+23=(1+2)2,13+23+33=(1+2+3)2,13+23+33+43
=(___)2,13+______=152,13+23+…+n3=()2。
用经验归纳法猜想下列各数的结论(是什么正整数的平方)
①=(___)2;;-=(__)2。
②=(____)2;=(___)2
把自然数1到100一个个地排下去:123……91011……99100
这是一个几位数?②这个数的各位上的各个数字和是多少

6.计算+++…+=
(提示把每个分数写成两个分数的差)
7.a是正整数,试比较aa+1和(a+1)a的大小.
8..如图把长方形的四条边涂上红色,然
后把宽3等分,把长8等分,分成24个
小长方形,那么这24个长方形中,
两边涂色的有__个,一边涂色的有__个,四边都不着色的有__个。
本题如果改为把宽m等分,长n等分(m,n都是大于1的自然数)那么这mn个长方形中,两边涂色的有__个,一边涂色的有__个,四边都不着色的有__个
9.把表面涂有红色的正方体的各棱都4等分,切成64个小正方体,那么这64个中,三面涂
查看更多
单篇购买
VIP会员(1亿+VIP文档免费下)

扫码即表示接受《下载须知》

初中数学竞赛标准教程及练习14:经验归纳法

文档大小:59KB

限时特价:扫码查看

• 请登录后再进行扫码购买
• 使用微信/支付宝扫码注册及付费下载,详阅 用户协议 隐私政策
• 如已在其他页面进行付款,请刷新当前页面重试
• 付费购买成功后,此文档可永久免费下载
全场最划算
12个月
199.0
¥360.0
限时特惠
3个月
69.9
¥90.0
新人专享
1个月
19.9
¥30.0
24个月
398.0
¥720.0
6个月会员
139.9
¥180.0

6亿VIP文档任选,共次下载特权。

已优惠

微信/支付宝扫码完成支付,可开具发票

VIP尽享专属权益

VIP文档免费下载

赠送VIP文档免费下载次数

阅读免打扰

去除文档详情页间广告

专属身份标识

尊贵的VIP专属身份标识

高级客服

一对一高级客服服务

多端互通

电脑端/手机端权益通用