




如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
鸽巢问题(一)抽屉原理是组合数学中的一个重要原理,它最早由德国数学家狄里克雷(Dirichlet)提出并运用于解决数论中的问题,所以该原理又称“狄里克雷原理”。抽屉原理有两个经典案例,一个是把10个苹果放进9个抽屉里,总有一个抽屉里至少放了2个苹果,所以这个原理称作“抽屉原理”;另一个是6只鸽子飞进5个鸽巢,总有一个鸽巢至少飞进2只鸽子,所以也称为“鸽巢原理”。1“总有”就是说“一定有一个笔筒”。“至少”就是说“不少于2支,可能是2支,也可能多于2支”。我们可以摆一摆。我们可以摆一摆。我们可以摆一摆。我们可以摆一摆。0先放3支,在每个笔筒中放1支,剩下的1支就要放进其中的一个笔筒。所以至少有一个笔筒中有2支铅笔。做一做1我给大家表演一个“魔术”。一副牌,取出大小王,还剩52张牌,你们5人每人随意抽一张,我知道至少有2张牌是同花色的。至少有2张牌是同花色。鸽巢问题(二)27本书放进3个抽屉,有一个抽屉至少放3本书。8本书、10本书⋯⋯把书尽量多地“平均分”给各个抽屉,看每个抽屉能分到多少本书,剩下的书不管放到哪个抽屉,总有一个抽屉比平均分得的本数多1本。做一做1把11只鸽子看作11个物品,把4个鸽笼看作4个抽屉,11÷4=2……3,2+1=3,总有一个抽屉至少放3个物品。所以,总有一个鸽笼至少飞进了3只鸽子。做一做2把5个人看作5个物品,把4把椅子看作4个抽屉,5÷4=1⋯⋯1,1+1=2,总有一个抽屉放2个物品。所以,总有一把椅子上至少坐2人。2.张叔叔参加飞镖比赛,投了5镖,成绩是41环。张叔叔至少有一镖不低于9环。为什么?把投了的5镖看作5个抽屉,把成果41环看作41个物品。41÷5=8……1,8+1=9,至少有一个抽屉里放了9个物品。所以,张叔叔至少有一镖不低于9环。3.给一个正方体木块的6个面分别涂上蓝、黄两种颜色。不论怎么涂至少有3个面涂的颜色相同。为什么?把正方形的6个面看作6个物品,把蓝、黄两种颜色看作2个抽屉,6÷2=3,至少有3个物品在同一个抽屉里。所以,无论怎么涂至少有3个面涂的颜色相同。鸽巢问题(三)只摸2个球能保证是同色的吗?因为一共有红、蓝两种颜色的球,可以把两种“颜色”看成两个“抽屉”,“同色”就意味着“同一抽屉”。这样,就可以把“摸球问题”转化成“抽屉问题”。做一做1而一年中有12个月,如果把这12个月看作12个抽屉,把49个学生放进12个抽屉,49÷12=4……1,4+1=5,因此,总有一个抽屉里至少有5个人,也就是他们的生日在同一个月。把红、黄、蓝、白四种颜色的球各10个放到一个袋子里。至少取多少个球,可以保证取到两个颜色相同的球?把四种颜色看作4个抽屉,把取出的球看作物品,那么至少取4+1=5个球可以保证取到两个颜色相同的球。6.给下面每个格子涂上红色或蓝色,观察每一列,你有什么发现?

邻家****文章
实名认证
内容提供者


最近下载