




如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
2010届高考数学复习强化双基系列课件77《圆锥曲线-轨迹方程》基本知识概要:3.代入法:动点所满足的条件不易表述或求出,但形成轨迹的动点P(x,y)却随另一动点Q(x’,y’)的运动而有规律的运动,且动点Q的轨迹为给定或容易求得,则可先将x’,y’表示为x,y的式子,再代入Q的轨迹方程,然而整理得P的轨迹方程,代入法也称相关点法。5.交轨法:求两动曲线交点轨迹时,可由方程直接消去参数,例如求两动直线的交点时常用此法,也可以引入参数来建立这些动曲线的联系,然而消去参数得到轨迹方程。可以说是参数法的一种变种。二、注意事项:典型例题选讲一、直接法题型:三、代入法题型:四、参数法与点差法题型:六、点差法:小结一、求轨迹的一般方法:1.直接法,2.定义法,3.代入法,4.参数法,5.交轨法,6.几何法,7.待定系数法,8.点差法。课前热身y=0(x≥1)4.△ABC的顶点为A(0,-2),C(0,2),三边长a、b、c成等差数列,公差d<0;则动点B的轨迹方程为__________________________________.5.动点M(x,y)满足则点M轨迹是()(A)圆(B)双曲线(C)椭圆(D)抛物线6.当θ∈[0,π/2]时,抛物线y=x2-4xsinθ-cos2θ的顶点的轨迹方程是_____________7.已知线段AB的两个端点A、B分别在x轴、y轴上滑动,|AB|=3,点P是AB上一点,且|AP|=1,则点P的轨迹方程是_________________________8.过原点的动椭圆的一个焦点为F(1,0),长轴长为4,则动椭圆中心的轨迹方程为_________________返回能力·思维·方法【解题回顾】本题的轨迹方程是利用直接法求得,注意x的取值范围的求法.利用数量积的定义式的变形可求得相关的角或三角函数值.【解题分析】本例中动点M的几何特征并不是直接给定的,而是通过条件的运用从隐蔽的状态中被挖掘出来的【解题回顾】此题中动点P(x,y)是随着动点Q(x1,y1)的运动而运动的,而Q点在已知曲线C上,因此只要将x1,y1用x、y表示后代入曲线C方程中,即可得P点的轨迹方程.这种求轨迹的方法称为相关点法(又称代入法).5.M是抛物线y2=x上一动点,以OM为一边(O为原点),作正方形MNPO,求动点P的轨迹方程.6.过椭圆x2/9+y2/4=1内一定点(1,0)作弦,求诸弦中点的轨迹方程【解题回顾】本题由题设OM⊥AB、OA⊥OB及作差法求直线AB的斜率,来寻找各参数间关系,利用代换及整体性将参数消去从而获得M点的轨迹方程.延伸·拓展【解题回顾】本小题充分利用了三角形垂心这一已知条件由AD⊥BC得A、D坐标相同.由BH⊥AC建立等量关系同时注意轨迹的横纯粹性与完备性。再见

天真****目的
实名认证
内容提供者


最近下载