基于图神经网络模型的节点表示方法和装置.pdf 立即下载
2023-05-25
约1.3万字
约14页
0
574KB
举报 版权申诉
预览加载中,请您耐心等待几秒...

基于图神经网络模型的节点表示方法和装置.pdf

201911226793.pdf

预览

免费试读已结束,剩余 9 页请下载文档后查看

10 金币

下载文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

(19)中华人民共和国国家知识产权局(12)发明专利申请(10)申请公布号CN110909868A(43)申请公布日2020.03.24(21)申请号201911226793.8(22)申请日2019.12.04(71)申请人支付宝(杭州)信息技术有限公司地址310000浙江省杭州市西湖区西溪路556号8层B段801-11(72)发明人胡斌斌张志强周俊杨双红(74)专利代理机构北京亿腾知识产权代理事务所(普通合伙)11309代理人孙欣欣周良玉(51)Int.Cl.G06N3/04(2006.01)权利要求书3页说明书8页附图2页(54)发明名称基于图神经网络模型的节点表示方法和装置(57)摘要本说明书实施例提供一种基于图神经网络模型的节点表示方法和装置,方法包括:获取动态变化的关系网络图在多个时间切片中对应的多个图结构,以及基于所述多个图结构分别训练的多个图神经网络模型;从所述多个图结构中,分别提取目标节点对应于所述多个时间切片的多个子图;将所述多个子图对应输入到所述多个图神经网络模型,得到所述目标节点对应于所述多个时间切片的多个节点嵌入向量;通过基于时序的神经网络模型,融合所述多个节点嵌入向量,得到所述目标节点的融合向量。能够提升基于图神经网络模型的节点表示的准确性。CN110909868ACN110909868A权利要求书1/3页1.一种基于图神经网络模型的节点表示方法,所述方法包括:获取动态变化的关系网络图在多个时间切片中对应的多个图结构,以及基于所述多个图结构分别训练的多个图神经网络模型;从所述多个图结构中,分别提取目标节点对应于所述多个时间切片的多个子图;将所述多个子图对应输入到所述多个图神经网络模型,得到所述目标节点对应于所述多个时间切片的多个节点嵌入向量;通过基于时序的神经网络模型,融合所述多个节点嵌入向量,得到所述目标节点的融合向量。2.如权利要求1所述的方法,其中,所述得到所述目标节点的融合向量之后,所述方法还包括:根据所述目标节点的融合向量,确定所述目标节点的类别。3.如权利要求1所述的方法,其中,所述关系网络图包括第一节点,在所述多个图结构中,所述第一节点具有不同的节点特征,和/或,所述第一节点具有不同的邻居节点。4.如权利要求1所述的方法,其中,所述从所述多个图结构中,分别提取目标节点对应于所述多个时间切片的多个子图,包括:从所述多个图结构中,按照与所述目标节点具有连接关系,且满足经过的连接边的数目不超过预设阈值提取所述目标节点的各关联节点;提取所述目标节点、所述各关联节点,以及所述图结构中连接所述目标节点与所述各关联节点的各连接边,得到所述目标节点对应于所述多个时间切片的多个子图。5.如权利要求1所述的方法,其中,所述通过基于时序的神经网络模型,融合所述多个节点嵌入向量,得到所述目标节点的融合向量,包括:针对所述多个时间切片中的任意两个相邻时间切片,确定所述任意两个相邻时间切片对应的子图的差异向量;对于所述多个时间切片中的每个时间切片,将所述目标节点对应于该时间切片的节点嵌入向量,以及该时间切片与上一个时间切片对应的子图的差异向量构成向量组,将多个时间切片对应的向量组按照时间切片的顺序依次输入基于时序的第一神经网络,将第一神经网络处理各个向量组后得到的隐向量作为对应时间切片的初始融合向量;将所述目标节点对应于各时间切片的各初始融合向量,利用第二神经网络进行融合处理,得到所述目标节点的融合向量。6.如权利要求5所述的方法,其中,所述针对所述多个时间切片中的任意两个相邻时间切片,确定所述任意两个相邻时间切片对应的子图的差异向量,包括:根据所述目标节点对应于任意两个相邻时间切片的两个节点嵌入向量的差,得到所述差异向量。7.如权利要求5所述的方法,其中,所述针对所述多个时间切片中的任意两个相邻时间切片,确定所述任意两个相邻时间切片对应的子图的差异向量,包括:将所述目标节点对应于任意两个相邻时间切片的两个节点嵌入向量输入第三神经网络,通过所述第三神经网络输出所述差异向量。8.如权利要求5所述的方法,其中,当目标时间切片在所述多个时间切片中按照时序先后为第一个时间切片时,所述目标时间切片与上一个时间切片对应的子图的差异向量为预2CN110909868A权利要求书2/3页设向量。9.如权利要求5所述的方法,其中,所述第一神经网络包括长短期记忆LSTM网络。10.如权利要求5所述的方法,其中,所述第二神经网络包括多层感知器MLP网络。11.如权利要求1所述的方法,其中,所述关系网络图包括多个节点和节点之间的连接边,所述节点代表用户,具有连接边的两个用户之间具有关联关系。12.一种基于图神经网络模型的节点表示装置,所述装置包括:获取单元,用于获取动态变化的关系网络图在多个时间切片中对应的多个图结构,以及基于所述多个图结
查看更多
单篇购买
VIP会员(1亿+VIP文档免费下)

扫码即表示接受《下载须知》

基于图神经网络模型的节点表示方法和装置

文档大小:574KB

限时特价:扫码查看

• 请登录后再进行扫码购买
• 使用微信/支付宝扫码注册及付费下载,详阅 用户协议 隐私政策
• 如已在其他页面进行付款,请刷新当前页面重试
• 付费购买成功后,此文档可永久免费下载
全场最划算
12个月
199.0
¥360.0
限时特惠
3个月
69.9
¥90.0
新人专享
1个月
19.9
¥30.0
24个月
398.0
¥720.0
6个月会员
139.9
¥180.0

6亿VIP文档任选,共次下载特权。

已优惠

微信/支付宝扫码完成支付,可开具发票

VIP尽享专属权益

VIP文档免费下载

赠送VIP文档免费下载次数

阅读免打扰

去除文档详情页间广告

专属身份标识

尊贵的VIP专属身份标识

高级客服

一对一高级客服服务

多端互通

电脑端/手机端权益通用