九年级数学全册 拔高专题 抛物线与圆的综合练习-人教版初中九年级全册数学试题.doc 立即下载
2024-06-18
约3.5千字
约8页
0
1.1MB
举报 版权申诉
预览加载中,请您耐心等待几秒...

九年级数学全册 拔高专题 抛物线与圆的综合练习-人教版初中九年级全册数学试题.doc

九年级数学全册拔高专题抛物线与圆的综合练习-人教版初中九年级全册数学试题.doc

预览

免费试读已结束,剩余 3 页请下载文档后查看

10 金币

下载文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

拔高专题抛物线与圆的综合一、基本模型构建常见模型思考圆与抛物线以及与坐标系相交,根据抛物线的解析式可求交点坐标,根据交点可求三角形的边长,由于圆的位置不同,三角形的形状也不同。再根据三角形的形状,再解决其它问题。二、拔高精讲精练探究点一:抛物线、圆和直线相切的问题例1:(2015•崇左)如图,在平面直角坐标系中,点M的坐标是(5,4),⊙M与y轴相切于点C,与x轴相交于A,B两点.(1)则点A,B,C的坐标分别是A(2,0),B(8,0),C(0,4);(2)设经过A,B两点的抛物线解析式为y=(x-5)2+k,它的顶点为E,求证:直线EA与⊙M相切;(3)在抛物线的对称轴上,是否存在点P,且点P在x轴的上方,使△PBC是等腰三角形?如果存在,请求出点P的坐标;如果不存在,请说明理由.(1)解:连接MC、MA,如图1所示:∵⊙M与y轴相切于点C,∴MC⊥y轴,∵M(5,4),∴MC=MA=5,OC=MD=4,∴C(0,4),∵MD⊥AB,∴DA=DB,∠MDA=90°,∴AD==3,∴BD=3,∴OA=5-3=2,OB=5+3=8,∴A(2,0),B(8,0);(2)证明:把点A(2,0)代入抛物线y=(x-5)2+k,得:k=-,∴E(5,-),∴DE=,∴ME=MD+DE=4+=,EA2=32+()2=,∵MA2+EA2=52+=,ME2=,∴MA2+EA2=ME2,∴∠MAE=90°,即EA⊥MA,∴EA与⊙M相切;(3)解:存在;点P坐标为(5,4),或(5,),或(5,4+);理由如下:由勾股定理得:BC===4,分三种情况:①当PB=PC时,点P在BC的垂直平分线上,点P与M重合,∴P(5,4);②当BP=BC=4时,如图2所示:∵PD===,∴P(5,);③当PC=BC=4时,连接MC,如图3所示:则∠PMC=90°,根据勾股定理得:PM===,∴PD=4+,∴P(5,4+);综上所述:存在点P,且点P在x轴的上方,使△PBC是等腰三角形,点P的坐标为(5,4),或(5,),或(5,4+).【变式训练】(2015•柳州)如图,已知抛物线y=-(x2-7x+6)的顶点坐标为M,与x轴相交于A,B两点(点B在点A的右侧),与y轴相交于点C.(1)用配方法将抛物线的解析式化为顶点式:y=a(x-h)2+k(a≠0),并指出顶点M的坐标;(2)在抛物线的对称轴上找点R,使得CR+AR的值最小,并求出其最小值和点R的坐标;(3)以AB为直径作⊙N交抛物线于点P(点P在对称轴的左侧),求证:直线MP是⊙N的切线.(1)解:∵y=-(x2-7x+6)=-(x2-7x)-3=-(x-)2+,∴抛物线的解析式化为顶点式为:y=-(x-)2+,顶点M的坐标是(,);(2)解:∵y=-(x2-7x+6),∴当y=0时,-(x2-7x+6)=0,解得x=1或6,∴A(1,0),B(6,0),∵x=0时,y=-3,∴C(0,-3).连接BC,则BC与对称轴x=的交点为R,连接AR,则CR+AR=CR+BR=BC,根据两点之间线段最短可知此时CR+AR的值最小,最小值为BC==3.设直线BC的解析式为y=kx+b,∵B(6,0),C(0,-3),∴,解得,∴直线BC的解析式为:y=x-3,令x=,得y=×-3=-,∴R点坐标为(,-);(3)证明:设点P坐标为(x,-x2+x-3).∵A(1,0),B(6,0),∴N(,0),∴以AB为直径的⊙N的半径为AB=,∴NP=,即(x-)2+(-x2+x-3)2=()2,化简整理得,x4-14x3+65x2-112x+60=0,(x-1)(x-2)(x-5)(x-6)=0,解得x1=1(与A重合,舍去),x2=2,x3=5(在对称轴的右侧,舍去),x4=6(与B重合,舍去),∴点P坐标为(2,2).∵M(,),N(,0),∴PM2=(2-)2+(2-)2=,PN2=(2-)2+22==,MN2=()2=,∴PM2+PN2=MN2,∴∠MPN=90°,∵点P在⊙N上,∴直线MP是⊙N的切线.【教师总结】本题是二次函数综合题目,考查了坐标与图形性质、垂径定理、二次函数解析式的求法、勾股定理、勾股定理的逆定理、切线的判定、等腰三角形的性质等知识;综合性强.探究点二:抛物线、圆和三角形的最值问题例2:(2015•茂名)如图,在平面直角坐标系中,⊙A与x轴相交于C(-2,0),D(-8,0)两点,与y轴相切于点B(0,4).(1)求经过B,C,D三点的抛物线的函数表达式;(2)设抛物线的顶点为E,证明:直线CE与⊙A相切;(3)在x轴下方的抛物线上,是否存在一点F,使△BDF面积最大,最大值是多少?并求出点F的坐标。解:(1)设抛物线的解析式为:y=ax2+bx+c,把B(0,4),C(-2,0),D(-8
查看更多
单篇购买
VIP会员(1亿+VIP文档免费下)

扫码即表示接受《下载须知》

九年级数学全册 拔高专题 抛物线与圆的综合练习-人教版初中九年级全册数学试题

文档大小:1.1MB

限时特价:扫码查看

• 请登录后再进行扫码购买
• 使用微信/支付宝扫码注册及付费下载,详阅 用户协议 隐私政策
• 如已在其他页面进行付款,请刷新当前页面重试
• 付费购买成功后,此文档可永久免费下载
全场最划算
12个月
199.0
¥360.0
限时特惠
3个月
69.9
¥90.0
新人专享
1个月
19.9
¥30.0
24个月
398.0
¥720.0
6个月会员
139.9
¥180.0

6亿VIP文档任选,共次下载特权。

已优惠

微信/支付宝扫码完成支付,可开具发票

VIP尽享专属权益

VIP文档免费下载

赠送VIP文档免费下载次数

阅读免打扰

去除文档详情页间广告

专属身份标识

尊贵的VIP专属身份标识

高级客服

一对一高级客服服务

多端互通

电脑端/手机端权益通用