如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
2024年宁夏银川市宁夏大学附中高二数学第一学期期末检测模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、“”是“直线:与直线:平行”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2、关于x的方程在内有解,则实数m的取值范围()A.B.C.D.3、已知圆柱的表面积为定值,当圆柱的容积最大时,圆柱的高的值为()A.1B.C.D.24、已知为坐标原点,向量,点,.若点在直线上,且,则点的坐标为().A.B.C.D.5、在四面体中,,,,且,,则等于()A.B.C.D.6、已知直线的一个方向向量为,则直线的倾斜角为()A.B.C.D.7、已知数列是等差数列,其前n项和为,则下列说法错误的是()A.数列一定是等比数列B.数列一定是等差数列C.数列一定是等差数列D.数列可能是常数数列8、抛物线的焦点坐标是()A.B.C.D.9、定义运算:.已知,都是锐角,且,,则()A.B.C.D.10、已知随机变量X,Y满足,,且,则的值为()A.0.2B.0.3C.0..5D.0.6二、填空题(本题共6小题,每题5分,共30分)11、生活中有这样的经验:三脚架在不平的地面上也可以稳固地支撑一部照相机.这个经验用我们所学的数学公理可以表述为___________.12、直线被圆截得的弦长为_______13、的展开式中的常数项为_______.14、已知命题:方程表示焦点在轴上的椭圆;命题:方程表示双曲线.若为真,则实数的取值范围为______.15、欧阳修在《卖油翁》中写道:(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿,可见“行行出状元”,卖油翁的技艺让人叹为观止.若铜钱是直径为4cm的圆,中间有边长为1cm的正方形孔,若你随机地向铜钱上滴一滴油,则油(油滴的大小忽略不计)正好落入孔中的概率是_______16、莱昂哈德·欧拉于1765年在他的著作《三角形的几何学》中首次提出定理:三角形的重心、垂心和外心共线.后来人们称这条直线为该三角形的欧拉线.已知的三个顶点坐标分别是,,,则的垂心坐标为______,的欧拉线方程为______三、解答题(本题共5小题,每题12分,共60分)17、著名的“康托尔三分集”是由德国数学家康托尔构造的,是人类理性思维的产物,其操作过程如下:将闭区间均分为三段,去掉中间的区间段记为第一次操作;再将剩下的两个闭区间,分别均分为三段,并各自去掉中间的区间段,记为第二次操作;…,如此这样,每次在上一次操作的基础上,将剩下的各个区间分别均分为三段,同样各自去掉中间的区间段.操作过程不断地进行下去,以至无穷.每次操作后剩下的闭区间构成的集合即是“康托尔三分集”.例如第一次操作后的“康托尔三分集”为.(1)求第二次操作后的“康托尔三分集”;(2)定义的区间长度为,记第n次操作后剩余的各区间长度和为,求;(3)记n次操作后“康托尔三分集”的区间长度总和为,若使不大于原来的,求n的最小值.(参考数据:,)18、二项式展开式中第五项的二项式系数是第三项系数的4倍.求:(1);(2)展开式中的所有的有理项.19、已知圆的方程为:.(1)求的值,使圆的周长最小;(2)过作直线,使与满足(1)中条件的圆相切,求的方程,并求切线段的长.20、已知函数的图象在点处的切线与直线平行(是自然对数的底数).(1)求的值;(2)若在上恒成立,求实数的取值范围.21、求证:(1)是上的偶函数;(2)是上的奇函数.参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:C【解析】根据两直线平行求得的值,由此确定充分、必要条件.【详解】由于,所以,当时,两直线重合,不符合题意,所以.所以“”是“直线:与直线:平行”的充要条件.故选:C2、答案:A【解析】当时,显然不成立,当时,分离变量,利用导数求得函数的单调性与最值,即可求解.【详解】当时,可得显然不成立;当时,由于方程可转化为,令,可得,当时,,函数单调递增;当时,,函数单调递减,所以当时,函数取唯一的极大值,也是最大值,所以,所以,即,所以实数m的取值范围.故选:A.3、答案:B【解析】设圆柱的底面半径为,则圆柱底,圆柱侧,则可得,则圆柱的体积为,利用导数求出最大值,确定值.【详解】设圆柱的底面半径为,则圆柱底,圆柱侧,∴,∴,则圆柱的体积,∴,由得,由得,∴当时,取极大值,也是最大值,即故选:B【点睛】本题主要考查了圆柱表面积和体积的计算,考查了导数的实际应用,考查了学生的应用意识.4、答案:A【解析】由在直线上,设,再利用向量垂直,可得,进而可求E点坐标.【详解】因为在直线上,故存在实数使得,.若,则,所以,解得,因此点的坐标为.故选:A.【定睛】本题考查了空间向量的共线和数量积运算,考查了运算求解能力和逻辑推理能力,属
努力****弘毅
实名认证
内容提供者
最近下载