您所在位置: 网站首页 / 无刷直流和交流伺服的异同.doc / 文档详情
无刷直流和交流伺服的异同.doc 立即下载
2024-08-17
约3.6千字
约4页
0
268KB
举报 版权申诉
预览加载中,请您耐心等待几秒...

无刷直流和交流伺服的异同.doc

无刷直流和交流伺服的异同.doc

预览

在线预览结束,喜欢就下载吧,查找使用更方便

10 金币

下载文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

PMSM和BLDCM的相似之处
PMSM起源于饶线式同步电机,它用永磁体代替了绕线式同步电机的激磁绕组,它的一个显著特点是反电势波形是正弦波,与感应电机非常相似。在转子上有永磁体,定子上有三相绕组。
BLDCM起源于永磁直流电机,它将永磁直流电机结构进行“里外翻”,取消了换相器和电刷,依靠电子换相电路进行换相。转子上有永磁体,定子上有三相绕组。
目前在空间飞行器中使用的PMSM和BLDCM转子主要是表面贴装永磁体结构。因此从构成结构上看,两者非常相似。
PMSM和BLDCM的不同之处
反电势不同,PMSM具有正弦波反电势,而BLDCM具有梯形波反电势。
定子绕组分布不同,PMSM采用短距分布绕组,有时也采用分数槽或正弦绕组,以
进一步减小纹波转矩。而BLDCM采用整距集中绕组。
运行电流不同,为产生恒定电磁转矩,PMSM需要正弦波定子电流;BLDCM需要矩形
波电流。PMSM和BLDCM反电势和定子电流波形如图1所示。



图1PMSM和BLDCM反电势和定子电流波形
永磁体形状不同,PMSM永磁体形状呈抛物线形,在气隙中产生的磁密尽量呈正弦
波分布;BLDCM永磁体形状呈瓦片形,在气隙中产生的磁密呈梯形波分布。
运行方式不同,PMSM采用三相同时工作,每相电流相差120°电角度,要求有位置
传感器。BLDCM采用绕组两两导通,每相导通120°电角度,每60°电角度换相,只需要换相点位置检测。
正是这些不同之处,使得在对PMSM和BLDCM的控制方法、控制策略和控制电路上有很
大的差别。
PMSM和BLDCM特性分析
按照空间应用中最关心的特性:功率密度、转矩惯量比、齿槽转矩和转矩波动、反馈元件、逆变器容量等特性对PMSM和BLDCM进行对比分析。
功率密度
在机器人和空间作动器等高性能指标应用场合,对于给定的输出功率,要求电机重量越小越好。功率密度受电机散热能力即电机定子表面积的限制。对于永磁电机,绝大多数的功率损耗产生在定子,包括铜耗、涡流损耗和磁滞损耗,而转子损耗经常被忽略。所以对于一个给定的结构尺寸,电机损耗越小,允许的功率密度就越高。假设PMSM和BLDCM的涡流损耗、磁滞损耗和铜耗相同,比较两种电机的输出功率。
PMSM中,正弦波电流可以通过滞环或PWM电流控制器得到,而铜耗基本上由电流决定。设正弦波电流幅值为,则有效值为,铜耗为,为相电阻。BLDCM中,铜耗为,为梯形波电流峰值。假设损耗相同,则可得出,所以BLDCM输出功率与PMSM输出功率之比为
(6)
式中,为反电势幅值。
所以,在相同的尺寸下,BDLCM与PMSM相比,可以多提供15%的功率输出。如果铁耗也相同,BDLCM的功率密度比PMSM可提高15%。
转矩惯量比
在伺服系统中,通常要求电机的最大加速度,转矩惯量比就是电机本身所能提供的最大加速度。因为BDLC可以比PMSM多提供15%的输出功率,所以它可获得被PMSM多15%的电磁转矩。如果BDLC和PMSM具有相同速度,它们的转子转动惯量也相同,那么BDLC的转矩惯量比要比PMSM大15%。
齿槽转矩和波动转矩
转矩脉动是机电伺服系统的最大困扰,它使精确的位置控制和高性能的速度控制很困难。在高速情况下,转子惯量可以过滤掉转矩波动。但在低速和直接驱动应用场合,转矩波动将严重影响系统性能,将使系统的精度和重复性恶化。而空间精密机电伺服系统绝大多数工作在低速场合,因此电机转矩脉动问题是影响系统性能的关键因素之一。
PMSM和BLDCM都存在转矩脉动问题。转矩脉动主要有以下几个原因造成:齿槽效应和磁通畸变、电流换相引起的转矩及机械加工制造引起的转矩。
齿槽效应
在永磁电机的电枢电流为零的情况下,当转子旋转时,由于定子齿槽的存在,定子铁芯磁阻的变化产生了齿槽磁阻转矩,齿槽转矩是交变的,与转子的位置有关,它是电动机本身空间和永磁场的函数。在电机制造上,将定子齿槽或永磁体斜一个齿距,可以使齿槽转矩减小到额定转矩的1%-2%左右。或者采用定子无槽结构,可以彻底消除齿槽效应,但这些方法都将降低电机的出力。PMSM和BDLC中的齿槽转矩脉动没有明显的差别。
磁通畸变和换相电流畸变引起的转矩脉动
磁通畸变和电流畸变是指PMSM中气隙磁场、反电势和电枢电流是非正弦波,BLDCM中气隙磁场和反电势非梯形波,电枢电流是非矩形波。气隙磁场和电枢电流相互作用后会产生转矩波动,反电动势与理想波形的偏差越大,引起的转矩脉动越大。
BLDCM中,电机的电感限制了换相时绕组电流的变化率,定子绕组电流不可能是矩形波。只能得到梯形波电流,引起较大的转矩波动。另外,BLDCM定子合成磁通不是平滑地旋转,而是以一种不连续地状态向前步进,定、转子旋转磁通不可能是严格同步的,这会造成转矩的脉动,脉动频率为基波的6倍。而在PMSM中产生正弦波电流是可
查看更多
单篇购买
VIP会员(1亿+VIP文档免费下)

扫码即表示接受《下载须知》

无刷直流和交流伺服的异同

文档大小:268KB

限时特价:扫码查看

• 请登录后再进行扫码购买
• 使用微信/支付宝扫码注册及付费下载,详阅 用户协议 隐私政策
• 如已在其他页面进行付款,请刷新当前页面重试
• 付费购买成功后,此文档可永久免费下载
全场最划算
12个月
199.0
¥360.0
限时特惠
3个月
69.9
¥90.0
新人专享
1个月
19.9
¥30.0
24个月
398.0
¥720.0
6个月会员
139.9
¥180.0

6亿VIP文档任选,共次下载特权。

已优惠

微信/支付宝扫码完成支付,可开具发票

VIP尽享专属权益

VIP文档免费下载

赠送VIP文档免费下载次数

阅读免打扰

去除文档详情页间广告

专属身份标识

尊贵的VIP专属身份标识

高级客服

一对一高级客服服务

多端互通

电脑端/手机端权益通用