




如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
我国数学家的小故事5篇古代历史人物传奇故事唐朝著名历史故事十二生肖民间故事传说古代妖怪故事传说简短早会激励小故事我国数学家的小故事一熊庆来(1893.09.11~1969.02.03),字迪之,出生于云南省红河哈尼族彝族自治州弥勒市息宰村。熊庆来热爱教育事业,为培养中国的科学人才,做出了卓越的贡献。熊庆来自幼养成勤奋好学的好习惯,非凡的记忆力与天才的语言接受能力,常令教育过他的中外教师惊叹不已。他潜心于学术研究与著述,编写的《高等数学分析》等10多种大学教材是当时第一次用中文写成的数学教科书,创办了中国近代史上第一个近代数学研究机构——清华大学算学研究部和国立东南大学、清华大学等3所大学的数学系,以及中国数学报。他一直治学严谨,数学论文常常修改三五遍以上。在任教授期间,他总是非常认真地批改学生的作业。作业中的错误他用红毛笔仔细地逐本圈阅,改正。好的作业,则用大笔书写一个“善”字,表示满意。他经常废寝忘食,不顾病痛地工作。据熊庆来的夫人回忆,在东南大学第一年,过度疲劳使他吐血,而且又犯痔疮,熊庆来竟顽强地伏在床上坚持编写教义。熊庆来在“函数理论”领域造诣很深。1932年他代表中国第一次出席了瑞士苏黎世国际数学家大会。1934年,他的论文《关于无穷级整函数与亚纯函数》发表,并以此获得法国国家博士学位,成为第一个获此学位的中国人。在这篇论文中,熊庆来所定义的“无穷级函数”,国际上称为“熊氏无穷数”,被载入了世界数学史册,奠定了他在国际数学界的地位。我国数学家的小故事二杨辉,中国南宋时期杰出的数学家,他在我国古代数学史和数学教育史上占有十分重要的地位。杨辉一生留下了大量的著述,其著名的数学书共五种二十一卷,这些著作极大地丰富了我国古代数学宝库,为数学科学的发展做出了卓越的贡献。杨辉还画了一张表示二项式展开后的系数构成的三角图形,称做“开方做法本源”,现在简称为“杨辉三角”。有一次,杨辉得到一本《黄帝九章算法细草》,这是北宋数家贾宪写的。这里面有不少了不起的成就,如贾宪描画了一张图,叫作“开方作法本源图”。图中的数字排列成一个大三角形,位于两腰上的数字均是1,其余数字则等于它上面两数字之和。从第二行开始,这个大三角形的每行数字,都对应于一组二项展开式的系数。杨辉把贾宪的这张画忠实地记录下来,并保存在自己的《详解九章算术》一书中。后来人们发现,这个大三角形不仅可以用来开方和解方程,而且与组合、高阶等差级数、内插法等数学知识都有密切关系。在西方,直到16世纪才有人在一本书的封面上绘出类似的图形。法国数学家巴斯加在1654年的论文中详细地讨论了这个图形的性质,所以在西方又称“巴斯加三角”。我国数学家的小故事三秦九韶,南宋数学家,1247年完成著作《数书九章》,其中“中国剩余定理”、三斜求积术和秦九韶算法(高次方程正根的数值求法)是有世界意义的重要贡献。在中国数学史上,广泛流传着一个“韩信点兵”的故事:韩信是汉高祖刘邦手下的大将,他英勇善战,智谋超群,为汉朝的建立立下了卓绝的功劳。据说韩信的数学水平也非常高超,他在点兵的时候,为了保住军事机密,不让敌人知道自己部队的实力,先令士兵从1至3报数,然后记下最后一个士兵所报之数;再令士兵从1至5报数,也记下最后一个士兵所报之数;最后令士兵从1至7报数,又记下最后一个士兵所报之数;这样,他很快就算出了自己部队士兵的总人数,而敌人则始终无法弄清他的部队究竟有多少名士兵?因为《孙子算经》早就对这类问题有过研究,但只是初具雏形,还远远谈不上完整。因此,后人把这一命题及其解法称为“孙子定理”主要是推崇《孙子算经》在这一类问题处理上的时间领先,其实想法的成熟,还有待提高。为了解决“孙子问题”中的不足,秦九韶推广了“孙子问题”的解法,从而提出了“中国剩余定理”。秦九韶经过长期的积累和苦心钻研,于公元1247年写成《数书九章》。这部中世纪的数学杰作,在许多方面都有所创造,其中求解一次同余组的“大衍求一术”和求高次方程数值解的“正负开方术”,更是具有世界意义的成就。正是因为这样,在西方数学史著作中,一直公正地称求解一次同余组的剩余定理为“中国剩余定理”。我国数学家的小故事四祖冲之出生在公元429年,正当南北朝刘宋王朝时代。他是个伟大的数学家、天文学家和物理学家,有许多卓越的成就,其中之一就是圆周率的计算。圆周率就是圆周的长度和直径的长度的比。这是一个无限不循环的小数,也就是说它是个没完没了的小数,各位数字的变化又没有规律。通常在计算的时候,我们把圆周率定为3?郾1416,这个数字实际上比圆周率稍微大一点。祖冲之在一千五百年以前就确定,圆周率在3?郾1415926至3?郾1414927之间,比3?郾1416精确得多。在他之后一千年,阿拉伯数学家才打破了这个精确程度的记录。计算圆周率是一件很不容易的事。我们知道,在一个

一条****杉淑
实名认证
内容提供者


最近下载