




如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
解答题训练(二) 1、已知函数 (1)求的最小正周期和最小值; (2)已知,求证: 2、本着健康、低碳的生活理念,租自行车骑游的人越来越多。某自行车租车点的收费标准是每车每次租不超过两小时免费,超过两小时的收费标准为2元(不足1小时的部分按1小时计算)。有人独立来该租车点则车骑游。各租一车一次。设甲、乙不超过两小时还车的概率分别为;两小时以上且不超过三小时还车的概率分别为;两人租车时间都不会超过四小时。 (Ⅰ)求甲、乙两人所付租车费用相同的概率; (Ⅱ)求甲、乙两人所付的租车费用之和为随机变量,求的分布列与数学期望; 3.如图,在直三棱柱ABC-A1B1C1中.∠BAC=90°,AB=AC=AA1=1.D是棱CC1上的一P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA. (I)求证:CD=C1D: (II)求二面角A-A1D-B的平面角的余弦值; (Ⅲ)求点C到平面B1DP的距离. 4、已知数列与满足:,,且 . (Ⅰ)求的值; (Ⅱ)设,证明:是等比数列; 析: (2) 18.解析: (1)所付费用相同即为元。设付0元为,付2元为,付4元为 则所付费用相同的概率为 (2)设甲,乙两个所付的费用之和为,可为 分布列 19.解析:(1)连接交于,, ,又为的中点, 中点,,,D为的中点。 (2)由题意,过B作,连接,则 ,为二面角的平面角。在中,,则 (3)因为,所以, , 在中,, (I)解:由 可得 又 (II)证明:对任意 ① ② ③ ②—③,得 ④ 将④代入①,可得 即 又 因此是等比数列.

xf****65
实名认证
内容提供者


最近下载