您所在位置: 网站首页 / 2022关于下学期数学教学计划4篇.docx / 文档详情
2022关于下学期数学教学计划4篇.docx 立即下载
2023-03-05
约7.4千字
约20页
0
39KB
举报 版权申诉
预览加载中,请您耐心等待几秒...

2022关于下学期数学教学计划4篇.docx

2022关于下学期数学教学计划4篇.docx

预览

免费试读已结束,剩余 15 页请下载文档后查看

10 金币

下载文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2022关于下学期数学教学计划4篇关于下学期数学教学计划4篇人生天地之间,若白驹过隙,忽然而已,成绩已属于过去,新一轮的工作即将来临,该为自己下阶段的学习制定一个计划了。计划到底怎么拟定才合适呢?下面是我精心整理的下学期数学教学计划4篇,欢迎大家借鉴与参考,希望对大家有所帮助。下学期数学教学计划篇1内容解析:不确定现象大量存在于自然界和人类社会中,概率正是研究这种现象、揭示其统计规律并帮助我们形成决策的数学工具.且随着生产的发展和科学技术水平的提高,概率在现实生活和科学预测中的作用愈加广泛和重要,掌握概率的基本知识和思想方法已成为现代社会公民必备的素养.用频率估计概率是概率初步这一章的第三节,是在学生初步了解概率的意义及会用概率的古典定义求一些简单等可能事件的概率之后对概率的进一步研究.教材这样编排其主要意图有三:1、遵从概率的产生及发展规律.历史上概率(指客观概率)的定义经历了三个阶段:①概率的古典定义;②概率的统计定义;③概率的公理化定义.2、符合学生的认知规律.概率的古典定义相对简单,所涉事件的概率有确定的结果,学生易于接受,而概率的统计定义其内涵更为深刻.3、相对于概率的古典定义,用频率估计概率的方法更具一般性与普遍性,它不受列举法求概率两个条件的限制,适用范围更广.所谓频率,是在相同条件下进行重复试验时事件发生的次数与试验总次数的比值,其本身是随机的,在试验前不能够确定,且随着试验的不同而发生改变.而一个随机事件发生的概率是确定的常数,是客观存在的,与试验次数无关.从以上角度上讲,频率与概率是有区别的,但在大量的重复试验中,随机事件发生的频率会呈现出明显的规律性:随着样本量的增加,频率将会越来越集中在一个常数附近,具有稳定性,即试验频率稳定于其理论概率.1713年,瑞士大数学家雅各布伯努利对这一客观规律性从理论上给予了证明,并提出了大数定律中的伯努利定律.基于此,我们可以用这个稳定的频率作为事件发生的概率──一般地,在大量重复试验中,如果事件A发生的频率会稳定在某个常数P附近,那么事件A发生的概率P(A)=P.这也就是概率的统计定义.它突破了对随机事件发生结果的等可能性与有限性的限制,揭示了偶然性中蕴含的必然规律.频率稳定性是概率统计定义的核心,相比古典定义用频率估计概率更具普适性,它是求概率最基本的方法.教学重点:了解用频率估计概率的必要性和合理性.一、目标和目标解析:目标:了解用频率估计概率的必要性和合理性,初步理解概率的统计定义;能通过对事件发生频率的分析,估计事件发生的概率;培养学生的动手能力和处理数据的能力,培养学生的理性精神.目标解析:1、能够通过试验获得事件发生的频率,并通过大量重复试验,让学生体会到随机事件内部所蕴涵的客观规律频率的稳定性.知道大量重复试验时频率可作为事件发生概率的估计值.2、结合生活实例,能进一步明晰频率与概率的区别与联系,了解用频率估计概率的方法与列举法求概率的区别,并能够通过对事件发生频率的分析,估计事件发生的概率.3、在经历用试验的方法探究概率的过程中,培养学生的动手能力、处理数据的能力,进一步增强统计意识、发展概率观念,同时培养学生实事求是的态度、勇于探索的.精神及交流与协作精神.二、教学问题诊断分析1、由于学生初学概率,且在此之前面对求概率的随机事件都是等可能事件,对于一些结果不是等可能的随机事件(如:认为姚明一次罚篮的结果进与不进是等可能的)会依然采取列举法,这类现象产生的原因是对用列举法求概率的两个条件把握不够,对事件发生的可能性大小分析不透彻所致.2、频率在一定程度上可以反映随机事件发生的可能性大小,但频率本身是随机的,在试验前不能确定,无法从根本上刻画事件发生可能性的大小,只有在大量重复试验的条件下,可以近似地作为这个事件的概率.概率是巨大数据统计后得出的结论,是一种大的整体趋势,是频率在理论上的期望值,它是一个确定的常数,是客观存在的,与试验次数无关.频率与概率是从量变到质变,是对立统一的.对于初学者,对两者关系的理解,还需要一个循序渐进的过程.3、容易忽略大量重复试验这个用频率估计概率前提条件.这一问题的出现也是对概率思想的内涵把握不够所致.概率是针对大量重复试验而言的,如果试验次数太少,试验频率可能会与理论概率值产生较大的偏差,进而不能合理的估计概率.教学难点:大量重复试验得到频率稳定值的分析,对频率与概率之间关系的理解.三、教学过程:(一)情景引入:问题1:姚明罚篮一次命中概率有多大?播放NBA(美国男子篮球职业联赛)0809赛季火箭队VS奇才队的比赛片段,在姚明罚篮球出手后,画面停滞,屏幕显示:问题:
查看更多
单篇购买
VIP会员(1亿+VIP文档免费下)

扫码即表示接受《下载须知》

2022关于下学期数学教学计划4篇

文档大小:39KB

限时特价:扫码查看

• 请登录后再进行扫码购买
• 使用微信/支付宝扫码注册及付费下载,详阅 用户协议 隐私政策
• 如已在其他页面进行付款,请刷新当前页面重试
• 付费购买成功后,此文档可永久免费下载
全场最划算
12个月
199.0
¥360.0
限时特惠
3个月
69.9
¥90.0
新人专享
1个月
19.9
¥30.0
24个月
398.0
¥720.0
6个月会员
139.9
¥180.0

6亿VIP文档任选,共次下载特权。

已优惠

微信/支付宝扫码完成支付,可开具发票

VIP尽享专属权益

VIP文档免费下载

赠送VIP文档免费下载次数

阅读免打扰

去除文档详情页间广告

专属身份标识

尊贵的VIP专属身份标识

高级客服

一对一高级客服服务

多端互通

电脑端/手机端权益通用