如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
基于残差自回归与Kalman滤波的天然气消费量组合预测研究(英文) ResearchonNaturalGasConsumptionCombiningResidualAutoregressionandKalmanFiltering Abstract: Forecastingnaturalgasconsumptionaccuratelyplaysacrucialroleinenergymanagementanddecision-making.Thispaperproposesacombinedforecastingapproachthatintegratesresidualautoregression(RAR)andKalmanfilteringtopredictnaturalgasconsumption.TheRARmodelisemployedtocapturethenonlinearpatternsofhistoricalconsumptiondata,whiletheKalmanfilterisutilizedtoincorporatereal-timeobservationsandupdatetheforecastedvalues.Theexperimentalresultsdemonstratethattheproposedapproachoutperformstraditionalforecastingmethodsintermsofaccuracyandstability.Thefindingsprovidevaluableinsightsforenergymanagersandpolicy-makersinoptimizingnaturalgasconsumption. 1.Introduction Theaccuratepredictionofnaturalgasconsumptionisessentialforeffectiveenergymanagementandpolicy-making.Understandingthetrendsandpatternsingasconsumptionassistsinoptimizingsupplyanddemandmanagement,pricingstrategies,andinfrastructureplanning.Traditionalforecastingmethods,suchastimeseriesanalysisandregressionmodels,havelimitationsincapturingthecomplexnonlinearitiesanddynamicspresentinnaturalgasconsumptiondata,especiallyinthepresenceofexternalshocks. 2.RelatedWork Numerousstudieshaveappliedvariousforecastingtechniquestopredictnaturalgasconsumption.Timeseriesmodels,includingautoregressiveintegratedmovingaverage(ARIMA)andseasonaldecompositionoftimeseries(STL),havebeenwidelyused.However,thesemodelsoftenfailtocapturethecomplexitiesofgasconsumptiondynamics,leadingtoinaccurateforecasts.Otherapproaches,suchasartificialneuralnetworks(ANN)andsupportvectormachines(SVM),attempttoovercometheselimitationsbuthavedifficultiesinexplainingtheunderlyingprocesses. 3.Methodology Thisresearchproposesacombinedapproachthatintegratesresidualautoregression(RAR)andKalmanfiltering.TheRARmodelcapturesthenonlinearpatternsofhistoricalgasconsumptionbymodelingtheresidualsofanautoregressiveprocess.TheresidualsarethenusedasinputstotheKalmanfilter,whi
快乐****蜜蜂
实名认证
内容提供者
最近下载