您所在位置: 网站首页 / 绝对值难题.docx / 文档详情
绝对值难题.docx 立即下载
2024-11-05
约3.2千字
约7页
0
89KB
举报 版权申诉
预览加载中,请您耐心等待几秒...

绝对值难题.docx

绝对值难题.docx

预览

免费试读已结束,剩余 2 页请下载文档后查看

20 金币

下载文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

第二讲绝对值
绝对值是初中代数中的一个基本概念,在求代数式的值、化简代数式、证明恒等式与不等式,以及求解方程与不等式时,经常会遇到含有绝对值符号的问题,同学们要学会根据绝对值的定义来解决这些问题.
下面我们先复习一下有关绝对值的基本知识,然后进行例题分析.
一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;零的绝对值是零.即

绝对值的几何意义可以借助于数轴来认识,它与距离的概念密切相关.在数轴上表示一个数的点离开原点的距离叫这个数的绝对值.
结合相反数的概念可知,除零外,绝对值相等的数有两个,它们恰好互为相反数.反之,相反数的绝对值相等也成立.由此还可得到一个常用的结论:任何一个实数的绝对值是非负数.
例1a,b为实数,下列各式对吗?若不对,应附加什么条件?
(1)|a+b|=|a|+|b|;
(2)|ab|=|a||b|;(3)|a-b|=|b-a|;
(4)若|a|=b,则a=b;
(5)若|a|<|b|,则a<b;
(6)若a>b,则|a|>|b|.
解(1)不对.当a,b同号或其中一个为0时成立.(2)对.
(3)对.
(4)不对.当a≥0时成立.
(5)不对.当b>0时成立.
(6)不对.当a+b>0时成立.
例2设有理数a,b,c在数轴上的对应点如图1-1所示,化简|b-a|+|a+c|+|c-b|.

解由图1-1可知,a>0,b<0,c<0,且有|c|>|a|>|b|>0.根据有理数加减运算的符号法则,有b-a<0,a+c<0,c-b<0.
再根据绝对值的概念,得
|b-a|=a-b,|a+c|=-(a+c),|c-b|=b-c.
于是有
原式=(a-b)-(a+c)+(b-c)=a-b-a-c+b-c=-2c.
例3已知x<-3,化简:|3+|2-|1+x|||.
分析这是一个含有多层绝对值符号的问题,可从里往外一层一层地去绝对值符号.
解原式=|3+|2+(1+x)||(因为1+x<0)
=|3+|3+x||
=|3-(3+x)|(因为3+x<0)
=|-x|=-x.

解因为abc≠0,所以a≠0,b≠0,c≠0.
(1)当a,b,c均大于零时,原式=3;
(2)当a,b,c均小于零时,原式=-3;
(3)当a,b,c中有两个大于零,一个小于零时,原式=1;
(4)当a,b,c中有两个小于零,一个大于零时,原式=-1.

说明本例的解法是采取把a,b,c中大于零与小于零的个数分情况加以解决的,这种解法叫作分类讨论法,它在解决绝对值问题时很常用.
例5若|x|=3,|y|=2,且|x-y|=y-x,求x+y的值.
解因为|x-y|≥0,所以y-x≥0,y≥x.由|x|=3,|y|=2可知,x<0,即x=-3.
(1)当y=2时,x+y=-1;
(2)当y=-2时,x+y=-5.
所以x+y的值为-1或-5.
例6若a,b,c为整数,且|a-b|19+|c-a|99=1,试计算|c-a|+|a-b|+|b-c|的值.
解a,b,c均为整数,则a-b,c-a也应为整数,且|a-b|19,|c-a|99为两个非负整数,和为1,所以只能是
|a-b|19=0且|c-a|99=1,①
或
|a-b|19=1且|c-a|99=0.②
由①有a=b且c=a±1,于是|b-c|=|c-a|=1;由②有c=a且a=b±1,于是|b-c|=|a-b|=1.无论①或②都有
|b-c|=1且|a-b|+|c-a|=1,
所以
|c-a|+|a-b|+|b-c|=2.

解依相反数的意义有
|x-y+3|=-|x+y-1999|.
因为任何一个实数的绝对值是非负数,所以必有|x-y+3|=0且|x+y-1999|=0.即

由①有x-y=-3,由②有x+y=1999.②-①得
2y=2002,y=1001,
所以

例8化简:|3x+1|+|2x-1|.
分析本题是两个绝对值和的问题.解题的关键是如何同时去掉两个绝对值符号.若分别去掉每个绝对值符号,则是很容易的事.例如,化简|3x+1|,只要考虑3x+1的正负,即可去掉绝对值符号.这里我们

为三个部分(如图1-2所示),即

这样我们就可以分类讨论化简了.


原式=-(3x+1)-(2x-1)=-5x;

原式=(3x+1)-(2x-1)=x+2;

原式=(3x+1)+(2x-1)=5x.
即

说明解这类题目,可先求出使各个绝对值等于零的变数字母的值,即先求出各个分界点,然后在数轴上标出这些分界点,这样就将数轴分成几个部分,根据变数字母的这些取值范围分类讨论化简,这种方法又称为“零点分段法”.
例9已知y=|2x+6|+|x-1|-4|x+1|,求y的最大值.
分析首先使用“零点分段法”将y化简,然后在各个取值范围内求出y的最大值,再加以比较,从中选出最大者.
查看更多
单篇购买
VIP会员(1亿+VIP文档免费下)

扫码即表示接受《下载须知》

绝对值难题

文档大小:89KB

限时特价:扫码查看

• 请登录后再进行扫码购买
• 使用微信/支付宝扫码注册及付费下载,详阅 用户协议 隐私政策
• 如已在其他页面进行付款,请刷新当前页面重试
• 付费购买成功后,此文档可永久免费下载
全场最划算
12个月
199.0
¥360.0
限时特惠
3个月
69.9
¥90.0
新人专享
1个月
19.9
¥30.0
24个月
398.0
¥720.0
6个月会员
139.9
¥180.0

6亿VIP文档任选,共次下载特权。

已优惠

微信/支付宝扫码完成支付,可开具发票

VIP尽享专属权益

VIP文档免费下载

赠送VIP文档免费下载次数

阅读免打扰

去除文档详情页间广告

专属身份标识

尊贵的VIP专属身份标识

高级客服

一对一高级客服服务

多端互通

电脑端/手机端权益通用