




如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
Picard存在和唯一性定理 本节利用逐次逼近法,来证明微分方程(2.1)的初值问题(2.2)的解的存在与唯一性定理. 定理2.2(存在与唯一性定理)如果方程(2.1)的右端函数在闭矩形域上满足如下条件:(1)在R上连续;(2)在R上关于变量y满足李普希兹(Lipschitz)条件,即存在常数N,使对于R上任何一对点和有不等式: 则初值问题(2.2)在区间上存在唯一解其中在证明定理之前,我们先对定理的条件与结论作些说明:1.在实际应用时,李普希兹条件的检验是比较费事的.然而,我们能够用一个较强的,但却易于验证的条件来代替它.即如果函数在闭矩形域R上关于y的偏导数存在并有界,.则李普希兹条件成立,事实上,由拉格朗日中值定理有其中满足,从而.如果在R上连续,它在R上当然就满足李普希兹条件.(这也是当年Cauchy证明的结果) 2.可以证明,如果偏导数在R上存在但是无界,则Lipschitz条件一定不满足,但是Lipschitz条件满足,偏导数不一定存在,如。 3.现对定理中的数h0做些解释.从几何直观上,初值问题(2.2)可能呈现如图2-5所示的情况.这时,过点的积图2-5分曲线当或时,其中,,到达R的上边界或下边界.于是,当时,曲线便可能没有定义.由此可见,初值问题(2.2)的解未必在整个区间上存在.由于定理假定在R上连续,从而存在于是,如果从点引两条斜率分别等于M和-M的直线,则积分曲线(如果存在的话)必被限制在图2-6的带阴影的两个区域内,因此,只要我们取则过点的积分曲线(如果存在的话)当x在区间上变化时,必位于R之中. 图2-6 存在性的证明求解初值问题(2.2)求解积分方程(2.3). 因此,只要证明积分方程(2.3)的连续解在上存在而且唯一就行了.下面用毕卡(Picard)逐次逼近来证明积分方程(2.3)的连续解的存在性,可分三个步骤进行:1.构造逐次近似序列. 近似序列或写成的每一项都在上有定义,这是因为于是.这样,我们在区间上,按逐次逼近手续得到了一个连续函数列(近似序列) 2.证明近似序列在区间上一致收敛. “函数序列的一致收敛1.设(1)是定义在I上的函数序列,若对,数列收敛,则称为序列(1)的收敛点.收敛点的全体叫收敛域.在收敛域上每一点,序列(1)都有极限,这极限形成收敛域上的一个函数,称为极限函数.设此函数为,即2.若对,总存在一个只与有关的自然数N,使得对I上任何一点,当时,有,则称序列(1)在I上一致收敛. 证明分如下二步:(1)序列在上一致收敛级数(2.7)在上一致收敛(级数).因为级数(2.7)的部分和 “函数项级数的一致收敛1.设函数项级数(1)在区间I上收敛于和函数,即对,数项级数收敛于,或级数(1)的部分和所组成的数列=由数列极限定义,对,,使得时,有2.级数(1)在I上一致收敛对,,使得对,当时,有.3.若函数项级数(1)的每一项都在I上连续,并且在I上一致收敛,则(1)的和函数在I上连续. (2)级数(2.7)在上一致收敛.用数学归纳法,易证级数(2.7)从第二项开始,每一项绝对值都小于正项级数的对应项,而上面这个正项级数显然是收敛的.所以,由优级数判别法, “函数项级数的一致收敛判别法(魏尔斯特拉斯优级数判别法)函数项级数(1)若函数项级数(1)在区间I上满足(I);(II)正项级数收敛.则函数项级数(1)在区间I上一致收敛.数项级数收敛的判别法(比值判别法,达朗贝尔()判别法)若正项级数的后项与前项的比值的极限等于:则当时级数收敛,时(或)时级数发散;时级数可能收敛,也可能发散. 级数(2.7)在区间上不仅收敛,而且一致收敛.设其和函数为,从而近似序列在区间上一致收敛于.由于在区间上连续,因而也是连续的.3.证明是积分方程(2.3)的解,从而也是初值问题(2.2)的解.在n次近似序列(2.6)两端取极限有因为 所以要证明是积分方程(2.3)的解,即成立,只需证明这是由函数的连续性及Picard序列的一致收敛性质保证的。 下面用“ε-N语言”证明上面的极限成立.我们先利用李普希兹条件,作下面的估计:由于序列在区间上一致收敛,因此,对任给ε>0,存在自然数,当时,对区间上所有x恒有从而由此推得换句话说,我们得到现在对恒等式(2.6)两端取极限,就得到此即表明函数是(2.3)的解.至此定理的存在性部分证毕. 唯一性的证明,区别于北大版课本的另一种证明方法: 下面来证明解的唯一性.为此我们先介绍一个在微分方程中很有用的不等式,即贝尔曼(Bellman)不等式.贝尔曼引理设y(x)为区间上非负的连续函数,.若存在使得y(x)满足不等式(2.9)则有证明先证明的情形.令,于是从(2,9)式立即有上式两端同乘以因子,则有 上式两端从x0到x积分,则有即由(

快乐****蜜蜂
实名认证
内容提供者


最近下载