拿高分选好题高中新课程数学苏教二轮复习精选.docx 立即下载
2024-11-06
约5.1千字
约8页
0
212KB
举报 版权申诉
预览加载中,请您耐心等待几秒...

拿高分选好题高中新课程数学苏教二轮复习精选.docx

拿高分选好题高中新课程数学苏教二轮复习精选.docx

预览

免费试读已结束,剩余 3 页请下载文档后查看

20 金币

下载文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

必考问题13立体几何

【真题体验】


1.(2012·江苏,7)如图,在长方体ABCD­A1B1C1D1中,AB=AD=3cm,AA1=2cm,则四棱锥A­BB1D1D的体积为________cm3.

解析关键是求出四棱锥A­BB1D1D的高,
连接AC交BD于O,在长方体中,∵AB=AD=3,∴BD=3eq\r(2)且AC⊥BD.
又∵BB1⊥底面ABCD,∴BB1⊥AC.
又DB∩BB1=B,∴AC⊥平面BB1D1D,
∴AO为四棱锥A­BB1D1D的高且AO=eq\f(1,2)BD=eq\f(3\r(2),2).
∵S矩形BB1D1D=BD×BB1=3eq\r(2)×2=6eq\r(2),
∴VA­BB1D1D=eq\f(1,3)S矩形BB1D1D·AO=eq\f(1,3)×6eq\r(2)×eq\f(3\r(2),2)=6(cm3).
答案6
2.(2012·江苏,16)如图,在直三棱柱ABC­A1B1C1中,A1B1=A1C1,D,E分别是棱BC,CC1上的点(点D不同于点C),且AD⊥DE,F为B1C1的中点.
求证:(1)平面ADE⊥平面BCC1B1;
(2)直线A1F∥平面ADE.
证明(1)因为ABC­A1B1C1是直三棱柱,所以CC1⊥平面ABC,又AD⊂平面ABC,所以CC1⊥AD.
又因为AD⊥DE,CC1,DE⊂平面BCC1B1,CC1∩DE=E,
所以AD⊥平面BCC1B1,又AD⊂平面ADE,
所以平面ADE⊥平面BCC1B1.
(2)因为A1B1=A1C1,F为B1C1的中点,所以A1F⊥B1C1.
因为CC1⊥平面A1B1C1,且A1F⊂平面A1B1C1,
所以CC1⊥A1F.
又因为CC1,B1C1⊂平面BCC1B1,CC1∩B1C1=C1,
所以A1F⊥平面BCC1B1.
由(1)知AD⊥平面BCC1B1,所以A1F∥AD.
又AD⊂平面ADE,A1F⊄平面ADE,
所以A1F∥平面ADE.
【高考定位】
高考对本内容的考查主要有:
(1)主要考查空间概念,空间想象能力,点线面位置关系判断,表面积与体积计算等.A级要求
(2)主要考查线线、线面、面面平行与垂直的证明.B级要求
【应对策略】
证明或探究空间中线线、线面、面面平行与垂直的位置关系,一要熟练掌握所有判定定理与性质定理,梳理好几种位置关系的常见证明方法,如证明线面平行,既可以构造线线平行,也可以构造面面平行.而证明线线平行常用的是三角形中位线性质,或构造平行四边形;二要用分析与综合相结合的方法来寻找证明的思路;三要注意表述规范,推理严谨,避免使用一些虽然正确但不能作为推理依据的结论.

必备知识
1.平行关系
(1)判定两直线平行,可供选用的定理有:
①公理4:若a∥b,b∥c,则a∥c.
②线面平行的性质定理:若a∥α,a⊂β,α∩β=b,则a∥b.
③线面垂直的性质定理:若a⊥α,b⊥α,则a∥b.
④面面平行的性质定理:若α∥β,r∩α=a,r∩β=b,则a∥b.
(2)线面平行的判定,可供选用的定理有:
①若a∥b,a⊄α,b⊂α,则a∥α.
②若α∥β,a⊂α,则a∥β.
(3)判定两平面平行,可供选用的定理有:若a,b⊂α,a,b相交,且a∥β,b∥β,则α∥β.
2.垂直关系
(1)判定两直线垂直,可供选用的定理有:
①若a∥b,b⊥c,则a⊥c.
②若a⊥α,b⊂α,则a⊥b.
(2)线面垂直的判定,可选用的定理有:
①若a⊥b,a⊥c,b,c⊂α,且b与c相交,则a⊥α.
②若a∥b,b⊥α,则a⊥α.
③若α⊥β,α∩β=b,a⊂α,a⊥b,则a⊥β.
(3)判定两平面垂直,可供选用的定理有:若a⊥α,a⊂β,则α⊥β.
必备方法
1.线线、线面、面面的平行与垂直的关系可以通过下列形式转化.

2.弄清各类问题的关键点,把握问题的层次,重视容易忽视的问题,如证平行时,由于过分强调线线、线面、面面平行的转化,而忽视由垂直关系证平行关系;证垂直时,同样忽视由平行关系来证明或利用勾股定理计算证明.
3.图形的展开、折叠、切割在考查空间想象能力方面有着不可比拟的优势,解决此类问题的关键是弄清图形变化前后的点、线、面的对应关系,并分析清楚变化前后点、线、面的位置变化.

命题角度一空间几何体的认识及表面积
与体积的计算

[命题要点]求简单组合体的侧面积和体积.
【例1】►(2012·南师附中模拟)已知四棱椎P­ABCD的底面是边长为6的正方形,侧棱PA⊥底面ABCD,且PA=8,则该四棱椎的体积是________.
[审题视点]

[听课记录]
[审题视点]四棱锥的高已知,先求底面面积,再利用棱锥的体积公式求体积.
解析底面是边长为6的正方形,故其底面积为3
查看更多
单篇购买
VIP会员(1亿+VIP文档免费下)

扫码即表示接受《下载须知》

拿高分选好题高中新课程数学苏教二轮复习精选

文档大小:212KB

限时特价:扫码查看

• 请登录后再进行扫码购买
• 使用微信/支付宝扫码注册及付费下载,详阅 用户协议 隐私政策
• 如已在其他页面进行付款,请刷新当前页面重试
• 付费购买成功后,此文档可永久免费下载
全场最划算
12个月
199.0
¥360.0
限时特惠
3个月
69.9
¥90.0
新人专享
1个月
19.9
¥30.0
24个月
398.0
¥720.0
6个月会员
139.9
¥180.0

6亿VIP文档任选,共次下载特权。

已优惠

微信/支付宝扫码完成支付,可开具发票

VIP尽享专属权益

VIP文档免费下载

赠送VIP文档免费下载次数

阅读免打扰

去除文档详情页间广告

专属身份标识

尊贵的VIP专属身份标识

高级客服

一对一高级客服服务

多端互通

电脑端/手机端权益通用