基于GA优选参数的SVR水质参数遥感反演方法.docx 立即下载
2024-11-12
约3.8千字
约3页
0
11KB
举报 版权申诉
预览加载中,请您耐心等待几秒...

基于GA优选参数的SVR水质参数遥感反演方法.docx

基于GA优选参数的SVR水质参数遥感反演方法.docx

预览

在线预览结束,喜欢就下载吧,查找使用更方便

5 金币

下载文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于GA优选参数的SVR水质参数遥感反演方法
1.Introduction
Waterqualityisavitalaspectofmaintaininghealthyaquaticecosystemsandensuringthewell-beingofhumanpopulations.However,conventionalmethodsformonitoringwaterqualityareoftenexpensive,labor-intensive,andtime-consuming.Remotesensingtechnologyoffersapromisingalternativeformonitoringwaterqualityparameters.Inrecentyears,supportvectorregression(SVR)hasproventobeapowerfultoolforwaterqualityparameterestimationusingremotesensingdata.However,theaccuracyofSVRmodelsstronglydependsontheselectionofappropriateinputparametersandhyperparameters.Inthisstudy,weproposeamethodologytooptimizetheselectionofparametersforSVR-basedwaterqualityparameterestimationusinggeneticalgorithms(GA).
2.Background
Supportvectorregression(SVR)isasupervisedlearningalgorithmthathasbeenwidelyusedformodelingnon-linear,high-dimensionaldata.TheperformanceofSVRmodelsishighlydependentontheselectionofhyperparameters,especiallytheregularizationparameterCandkernelparameterγ.Theoptimalvaluesforthesehyperparameterscanbeobtainedthroughgridsearchorotheroptimizationtechniques.However,thesemethodsarecomputationallyexpensiveandmayresultinoverfitting.
Geneticalgorithms(GA)areatypeofheuristicoptimizationtechniqueinspiredbybiologicalevolutionprocesses.GAcaneffectivelysearchforaglobaloptimalsolutioninalargesearchspaceandavoidlocaloptima.GAhasbeenappliedinvariousfields,includingparameterselectionformachinelearningmodels,featureselection,andoptimizationofcomplexsystems.
3.Methodology
Theproposedmethodinvolvesthefollowingsteps:
Step1:Datapreprocessing
Remotesensingdataforwaterqualityestimationtypicallyincludesmultispectralorhyperspectraldata,aswellasinsituwaterqualitymeasurements.Thedatashouldbepreprocessedtoremovenoise,correctatmosphericeffects,andnormalizethedata.
Step2:Featureselection
Featureselectionreferstotheprocessofidentifyingthemostinformativefeaturesfromtheinputdata.Inthisstudy,weusedthecorrelation-basedfeatureselection(CFS)algorithmtoselectrelevantfeaturesbasedontheircorrelationwiththeta
查看更多
单篇购买
VIP会员(1亿+VIP文档免费下)

扫码即表示接受《下载须知》

基于GA优选参数的SVR水质参数遥感反演方法

文档大小:11KB

限时特价:扫码查看

• 请登录后再进行扫码购买
• 使用微信/支付宝扫码注册及付费下载,详阅 用户协议 隐私政策
• 如已在其他页面进行付款,请刷新当前页面重试
• 付费购买成功后,此文档可永久免费下载
全场最划算
12个月
199.0
¥360.0
限时特惠
3个月
69.9
¥90.0
新人专享
1个月
19.9
¥30.0
24个月
398.0
¥720.0
6个月会员
139.9
¥180.0

6亿VIP文档任选,共次下载特权。

已优惠

微信/支付宝扫码完成支付,可开具发票

VIP尽享专属权益

VIP文档免费下载

赠送VIP文档免费下载次数

阅读免打扰

去除文档详情页间广告

专属身份标识

尊贵的VIP专属身份标识

高级客服

一对一高级客服服务

多端互通

电脑端/手机端权益通用