如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
改进量子行为粒子群算法智能组卷策略研究 Title:ResearchonImprovedQuantum-InspiredParticleSwarmOptimizationforIntelligentTestAssemblyStrategy Abstract: Inrecentyears,thedevelopmentofcomputer-basedintelligenttestassemblyhasgainedsignificantattentioninthefieldofeducation.Thispaperaimstoproposeanimprovedquantum-inspiredparticleswarmoptimization(QPSO)algorithmforefficientlysolvingtheintelligenttestassemblyproblem.Theresearchfocusesonenhancingtheconvergencerateandsearchcapabilityofthetraditionalparticleswarmoptimization(PSO)algorithmthroughtheintegrationofquantumbehaviorandprinciples.TheexperimentalresultsdemonstratetheeffectivenessandsuperiorityoftheproposedQPSOalgorithmincomparisontotraditionalPSOalgorithms.Thisstudyprovidesvaluableinsightsfordevelopingintelligenttestassemblystrategiesineducationalassessmentsystems. 1.Introduction Intelligenttestassemblyisacrucialtaskineducationalassessment,whichinvolvesselectingappropriateitemstoformatesttoevaluatetheknowledgeandabilitiesofstudents.Withtheincreasingdemandforpersonalizededucation,thetraditionalmanualtestassemblyapproachhasbecomeinefficientandtime-consuming.Hence,thereisaneedforautomatedapproachestoimprovethequality,fairness,andefficiencyoftestassembly. 2.LiteratureReview Thissectionprovidesanoverviewofexistingapproachestointelligenttestassembly.Variousmethods,suchasgeneticalgorithms(GA),simulatedannealing(SA),andPSO,havebeenappliedtosolvetheproblem.However,traditionalPSOalgorithmsfacechallengesinachievingoptimalsolutionsduetotheirlimitedexplorationandexploitationabilities. 3.Quantum-InspiredParticleSwarmOptimization ThissectionintroducestheprinciplesofquantummechanicsthatprovidethefoundationfortheQPSOalgorithm.Thebasicconceptsofsuperposition,entanglement,andquantumgatesareexplained,alongwithhowtheyareincorporatedintothePSOalgorithm.Theadaptationofparticlepositionsandvelocitiesbasedonquantumprinciplesenhancesthesearchcapabilityandconvergencerateofthealgorithm. 4.ImprovementStrategies ThissectionproposesseveralimprovementstrategiesfortheQPSOa
快乐****蜜蜂
实名认证
内容提供者
最近下载