

如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
关于Erdos的一个猜想 Introduction: PaulErdőswasaprolificmathematicianwhomadesignificantcontributionstovariousbranchesofmathematics,includingnumbertheory,graphtheory,andcombinatorics,amongothers.HewasknownforhiscollaborativeapproachtomathematicsandtheErdősnumber,ameasureofamathematician'scollaborationdistancefromErdős,whichhasbecomeafamousconceptinthemathematicscommunity.OneofErdős'smostfamousconjecturesistheErdősdiscrepancyproblem,whichremainsunsolved. ErdősDiscrepancyProblem: TheErdősdiscrepancyproblemisaconjecturethatremainsunsolvedsinceitwasproposedbyPaulErdősinthe1930s.Theconjectureconcernsasequenceofsigns{+1,-1}andseekstoprovethatthediscrepancyofthissequenceisunbounded.Thediscrepancyofasequenceisdefinedasthemaximumabsolutedifferencebetweenthenumberof+1'sand-1'sinanycontiguoussubsequenceofthesequence.Inotherwords,ifwehaveasequence{a1,a2,…,an},thediscrepancyisthemaximumvalueof|(a1+a2+...+aj)-(a(j+1)+a(j+2)+...+an)|,where1<=j<n. TheErdősdiscrepancyproblemaimstoprovethatforanyinfinitesequence{a1,a2,…},whereai=+1or-1,thereexistsaninfinitesubsequence{aj1,aj2,…}suchthatthediscrepancyofthesubsequenceisgreaterthananyarbitrarilylargepositiveinteger.Thatis,nomatterhowlargewechooseapositiveintegerK,wecanalwaysfindasubsequencewhosediscrepancyislargerthanK. Thisconjecturehasfar-reachingimplicationsforvariousareasofmathematics,includingnumbertheory,probabilitytheory,andcombinatorics,asitrelatestothedistributionandrandomnessofsequences.Asaresult,theErdősdiscrepancyproblemhasbecomeanactiveareaofresearchinmathematics,andmanymathematicianshavetriedtosolveitovertheyears. AttemptstoSolvetheErdősDiscrepancyProblem: SeveralmathematicianshaveattemptedtosolvetheErdősdiscrepancyproblemovertheyears,buttodate,noonehasbeenabletoproveordisprovetheconjecture.Theproblemremainsoneofthemostfascinatingandchallengingopenproblemsinmathematics. Oneapproachtosolvingtheprobleminvolvesusingprobabilistictechniquestoshowthatasequenceofsignscannothavesmalldiscrepancyincertaincases.Forexample,in1975,H.N.Shapiroan

快乐****蜜蜂
实名认证
内容提供者


最近下载