


如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
基于EKF的BLDCM状态观测器设计 Introduction: BrushlessDCmotors(BLDCM)arewidelyusedinvariousindustrialandconsumerapplicationsduetotheiradvantagessuchashighefficiency,compactsize,andlowmaintenance.However,theprecisecontrolofBLDCMischallengingasitrequiresaccurateestimationofthemotorstatevariables,suchasrotorposition,speed,andvoltage,whichareusuallynotdirectlymeasurable.Therefore,designingarobuststateestimatorforBLDCMiscrucialforachievingaccuratecontrolperformance. ExtendedKalmanfilter(EKF)isapopularmethodforstateestimationofnonlineardynamicsystems,suchasBLDCM.Inthispaper,wewilldescribethedesignandimplementationofanEKF-basedobserverforestimatingthestatevariablesofBLDCM. Systemmodeling: ThefirststepindesigningtheobserveristomodelthedynamicsofBLDCM.Themostcommonlyusedmodelisthestate-spacerepresentation,whichcanbedescribedasfollows: ẋ(t)=f(x(t),u(t)) y(t)=h(x(t),u(t)) Wherex(t)=[θ(t),ω(t),i(t)]Tisthestatevariablevector,u(t)=[Va(t),Vb(t),Vc(t)]Tistheinputvoltagevector,andy(t)=[θ(t),ω(t)]Tistheoutputmeasurementvector.Thestateequationscanbedefinedas: θ̇(t)=ω(t) ω̇(t)=-(R/L)i(t)-(K/L)ω(t)sin(θ(t))+(K/(LJ))τ(t) i̇(t)=-(1/C)(Va(t)+Vb(t)+Vc(t))-(R/L)i(t) WhereR,L,K,J,andCarethemotorparameters,andτ(t)istheloadtorque. EKFdesign: TheEKFalgorithmisusedtoestimatethestatevariablesbasedontheinputandoutputmeasurements.Thealgorithmconsistsoftwostages:predictionandupdate.Inthepredictionstage,thestateestimateispropagatedbasedonthesystemdynamics,andthecovariancematrixisupdatedbasedontheprocessnoise.Intheupdatestage,thestateestimateiscorrectedbasedonthemeasurementresidual,andthecovariancematrixisupdatedbasedonthemeasurementnoise. TheEKFalgorithmrequiresthenonlinearityofthemodeltobelinearizedaroundthecurrentstateestimate.Therefore,theJacobianmatricesofthesystemdynamicsandobservationfunctionsneedtobecomputedateachtimestep.TheJacobianmatrixofthesystemdynamicsisdefinedas: F(x(t),u(t))=∂f(x(t),u(t))/∂x(t) TheJacobianmatrixoftheobservationfunctionisdefinedas: H(x(t))=∂h(x(t))/∂x(t) TheEKFalgorithmcanbesummari

快乐****蜜蜂
实名认证
内容提供者


最近下载