

如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
解无约束优化问题的新的两点步长梯度方法(英文) Introduction Unconstrainedoptimizationproblemsariseinvariousdisciplinessuchasengineering,economics,andscience.Thegoalofunconstrainedoptimizationistofindthevaluesofthedecisionvariablesthatminimizeormaximizeaspecificobjectivefunction.Thegradientdescentmethodisoneofthemostpopularoptimizationmethodsusedtosolveunconstrainedoptimizationproblems.Inthispaper,weproposeanewtwo-pointstepsizegradientdescentmethodtosolvetheunconstrainedoptimizationproblem.Thispaperwilldiscussthealgorithmofthismethod,itsconvergenceproperties,anditsadvantagesovertheexistinggradientdescentmethods. Algorithmfortwo-pointstepsizegradientdescentmethod Thestandardgradientdescentmethodupdatesthedecisionvariablesiterativelyasfollows: x_k+1=x_k-t_k*∇f(x_k) wherex_kisthevalueofthedecisionvariableatiterationk,t_kisthestepsizeatiterationk,and∇f(x_k)isthegradientoftheobjectivefunctionatx_k. Ourproposedtwo-pointstepsizegradientdescentmethodisanextensionofthestandardgradientdescentmethod.Insteadofusingafixedstepsizeineachiteration,weuseatwo-pointstepsizethatiscomputedbasedonthecurvatureoftheobjectivefunction.Thealgorithmforthetwo-pointstepsizegradientdescentmethodisasfollows: Step1:Initializex_0andsetk=0. Step2:Computethegradientoftheobjectivefunctionatx_k,i.e.,∇f(x_k). Step3:Computethefunctionvalueatthetwocandidatepointsx_k-t_k/2*∇f(x_k)andx_k-t_k*∇f(x_k),wheret_kisthestepsizeatiterationk. Step4:Choosethecandidatepointthatproducesthesmallestfunctionvalueandsetx_k+1=x_k-t_k*∇f(x_k). Step5:Updatethestepsizeusingtheformulat_k+1=α*t_k,whereαisaconstantbetween0and1. Step6:Ifthestoppingcriterionissatisfied,stop.Otherwise,setk=k+1andgotostep2. Convergenceproperties Wenowprovetheconvergenceofthetwo-pointstepsizegradientdescentmethod.Weassumethattheobjectivefunctionf(x)iscontinuouslydifferentiableandhasauniqueglobalminimum. Theorem:Let{x_k}bethesequencegeneratedbythetwo-pointstepsizegradientdescentmethod.Supposethatthestepsizesequence{t_k}satisfies: 1)∑(k=0)^∞t_k=∞ 2)∑(k=0)^∞t_k^2<∞ Then{x_k}conv

快乐****蜜蜂
实名认证
内容提供者


最近下载