

如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
一种基于深度强化学习的酒店收益管理模型与方法 Title:ADeepReinforcementLearning-BasedModelandApproachforHotelRevenueManagement Abstract: Effectiverevenuemanagementplaysacrucialroleinthesuccessofthehotelindustry.Traditionally,revenuemanagementstrategieshavereliedonpredefinedrulesetsandheuristics.Withtheadvancementsinmachinelearningandspecificallydeepreinforcementlearning,newopportunitiesarisefordevelopingmoreintelligentanddynamicrevenuemanagementmodels.Inthispaper,weproposeanoveldeepreinforcementlearning-basedmodelandapproachforhotelrevenuemanagement.Themodelaimstomaximizethelong-termrevenuebydynamicallyadjustingpricesinresponsetochangingmarketconditions.Wealsopresentacasestudytodemonstratetheeffectivenessofourproposedmodelinoptimizinghotelrevenue. 1.Introduction: Revenuemanagementhasbecomeanintegralpartofthehotelindustryashoteliersstrivetooptimizetheirprofits.Traditionalrevenuemanagementstrategiesfacelimitationsintheirabilitytoadapttodynamicmarketconditionsanduncertaincustomerbehavior.Deepreinforcementlearningoffersapromisingsolutionbyenablingthemodeltolearnandadaptitspricingstrategiesthroughtrialanderrorinteractionswiththeenvironment.Theobjectiveofthisresearchistodevelopadeepreinforcementlearning-basedmodelforhotelrevenuemanagementthatmaximizeslong-termrevenuebydynamicallyadjustingprices. 2.RelatedWork: Thissectionprovidesanoverviewoftheexistingliteratureonhotelrevenuemanagementmodelsandtheapplicationofdeepreinforcementlearningtechniquesinvariousdomains.Wediscussthelimitationsoftraditionalrevenuemanagementmodelsandhighlighttheadvantagesandpotentialbenefitsofincorporatingdeepreinforcementlearningforrevenuemanagement. 3.Methodology: Weproposeadeepreinforcementlearning-basedmodelforhotelrevenuemanagement.Themodelconsistsofanagent,anenvironment,andarewardfunction.Theagentutilizesadeepneuralnetworktolearntheoptimalpricingpolicybyinteractingwiththeenvironment.Theenvironmentsimulatesthemarketconditions,customerdemand,competitorprices,andotherinfluencingfactors.Therewardfunctionprovidesfeedbackto

快乐****蜜蜂
实名认证
内容提供者


最近下载