

如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
基于特征选择和改进深度森林的短期风电功率预测 Abstract: Withtherapiddevelopmentofwindpowergeneration,accurateandreliableshort-termwindpowerforecastinghasbecomeincreasinglyimportantforthestableandeffectiveoperationofpowergrids.Inthispaper,ahybridmodelcombiningfeatureselectionandimproveddeepforestalgorithmisproposedforshort-termwindpowerforecasting.Throughtheanalysisofhistoricalwindpowergenerationdataandmeteorologicaldata,therelevantfeaturesareselectedtoimprovetheaccuracyandefficiencyofwindpowerforecasting.Moreover,theimproveddeepforestalgorithmisusedtoconstructthepredictionmodel,whichcaneffectivelyhandlethenon-linearanddynamiccharacteristicsofwindpowergeneration.Theexperimentresultsshowthattheproposedmodelcanachievehigheraccuracyandbetterrobustnessinwindpowerforecastingcomparedtothetraditionalforecastingmodels. Introduction: Asacleanandrenewableenergysource,windpowerhasbeenwidelyusedaroundtheworldforthepastdecade.However,duetotheuniquecharacteristicsofwindpower,suchasitsintermittency,randomnessanduncertainty,theaccurateandreliablepredictionofwindpoweroutputisstillachallengingtask.Theshort-termwindpowerforecastingisofgreatsignificanceinensuringthestabilityandsecurityofpowergridsaswellastheintegrationofwindenergyintothepowersystem. Manystudieshavebeenconductedontheshort-termwindpowerforecasting,andvariousmodelsandalgorithmshavebeenproposed.Amongthem,themachinelearningalgorithms,suchasartificialneuralnetworks(ANN),supportvectormachines(SVM),andrandomforest(RF),havebeenwidelyusedduetotheirexcellentnon-linearfittingabilityandhighpredictionaccuracy.However,theconventionalmachinelearningmodelsmaysufferfromtheissuesofoverfitting,dimensionalitycurse,andredundantfeatures.Therefore,thispaperproposesahybridmodelbasedonfeatureselectionandimproveddeepforestalgorithmforwindpowerforecasting. Methodology: 1.DataPreprocessingandFeatureSelection Thedatapreprocessinginvolvesdatacleaning,normalization,andencoding.Thehistoricaldataofwindpowergenerationsandmeteorologicalfactorsareusedfortheanalysisandtrainingoft

快乐****蜜蜂
实名认证
内容提供者


最近下载
最新上传
2024年安徽省六安市金寨县二级建造师考试水利水电工程管理与实务考前冲刺试卷及答案.docx
2024年安徽省六安市金寨县二级建造师考试水利水电工程管理与实务考前冲刺试卷完整版.docx
2025年高考河南省化学真题试卷(网络收集版).pdf
2025年高考江苏卷物理真题(网络收集版).pdf
2025年高考山东地理真题(网络收集版).pdf
2025年高考山东卷物理真题(网络收集版).pdf
2025高考广西卷物理真题及答案(网络收集版).pdf
2025年高考安徽卷化学真题及答案(网络收集版).pdf
2025年黑吉辽蒙化学高考真题试卷及答案-黑龙江卷(网络收集版).pdf
2025年高考云南省物理真题及答案(网络收集版).pdf