



如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
(完整word)圆的方程易错题 (完整word)圆的方程易错题 (完整word)圆的方程易错题 圆的方程易错题 1。与圆相切,且在轴,轴上截距相等的直线共有() (A)4条(B)3条(C)2条(D)1条 2.方程表示的曲线是() (A)一条射线(B)一个圆(C)两条射线(D)半个圆 3。圆上到直线的距离为1的点有几个? 分析:借助图形直观求解.或先求出直线、的方程,从代数计算中寻找解答. 解法一:圆的圆心为,半径. 设圆心到直线的距离为,则. 如图,在圆心同侧,与直线平行且距离为1的直线与圆有两个交点,这两个交点符合题意. 又. ∴与直线平行的圆的切线的两个切点中有一个切点也符合题意. ∴符合题意的点共有3个. 解法二:符合题意的点是平行于直线,且与之距离为1的直线和圆的交点. 设所求直线为,则, ∴,即,或,也即 ,或. 设圆的圆心到直线、的距离为、,则 ,. ∴与相切,与圆有一个公共点;与圆相交,与圆有两个公共点.即符合题意的点共3个. 说明:对于本题,若不留心,则易发生以下误解: 设圆心到直线的距离为,则. ∴圆到距离为1的点有两个. 显然,上述误解中的是圆心到直线的距离,,只能说明此直线与圆有两个交点,而不能说明圆上有两点到此直线的距离为1. 到一条直线的距离等于定值的点,在与此直线距离为这个定值的两条平行直线上,因此题中所求的点就是这两条平行直线与圆的公共点.求直线与圆的公共点个数,一般根据圆与直线的位置关系来判断,即根据圆心与直线的距离和半径的大小比较来判断. 4.求过两点、且圆心在直线上的圆的标准方程并判断点与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点与圆的位置关系,只须看点与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为. ∵圆心在上,故. ∴圆的方程为. 又∵该圆过、两点. ∴ 解之得:,. 所以所求圆的方程为. 解法二:(直接求出圆心坐标和半径) 因为圆过、两点,所以圆心必在线段的垂直平分线上,又因为,故的斜率为1,又的中点为,故的垂直平分线的方程为:即. 又知圆心在直线上,故圆心坐标为 ∴半径. 故所求圆的方程为. 又点到圆心的距离为 . ∴点在圆外. 说明:本题利用两种方法求解了圆的方程,都围绕着求圆的圆心和半径这两个关键的量,然后根据圆心与定点之间的距离和半径的大小关系来判定点与圆的位置关系,若将点换成直线又该如何来判定直线与圆的位置关系呢? 5。已知圆,求过点与圆相切的切线. 解:∵点不在圆上, ∴切线的直线方程可设为 根据 ∴ 解得 所以 即 因为过圆外一点作圆得切线应该有两条,可见另一条直线的斜率不存在.易求另一条切线为. 说明:上述解题过程容易漏解斜率不存在的情况,要注意补回漏掉的解. 本题还有其他解法,例如把所设的切线方程代入圆方程,用判别式等于0解决(也要注意漏解).还可以运用,求出切点坐标、的值来解决,此时没有漏解. 6.设圆满足:(1)截轴所得弦长为2;(2)被轴分成两段弧,其弧长的比为,(3)圆心到直线的距离为,求该圆的方程. 7。设点是圆是任一点,求的取值范围. 分析:的几何意义是过圆上一动点和定点的连线的斜率,利用此直线与圆有公共点,可确定出的取值范围.

王子****青蛙
实名认证
内容提供者


最近下载