

如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
多特征融合的英语口语考试自动评分系统的研究 Introduction Englishlanguageproficiencyhasbecomeasignificantdeterminantofacademic,professional,andpersonalsuccessintoday'sglobalizedworld.Therefore,languagetestingandassessmenthavereceivedincreasingattentionfromacademicinstitutions,languagetrainingcenters,andemployers.TraditionalEnglishlanguagetestsareadministeredmanuallybyqualifiedexaminers,whichcanbetime-consuming,expensive,andsubjective.Withtheadventoftechnology,automaticscoringsystemshavebeenproposedtoaddressthesedisadvantages.However,existingautomaticscoringsystemsoftenrelyonindividualfeaturesofspeech,suchaspronunciation,grammar,vocabulary,orfluency,whichcanbeinsufficientandinaccurate.Therefore,thispaperproposesamulti-featurefusion-basedEnglishoralexamautomaticscoringsystemtoimprovethereliabilityandvalidityoftheassessment. Background AutomaticscoringsystemsforEnglishoralexamshavebeendevelopedbasedonvariousapproaches.Forinstance,rule-basedsystemsutilizepre-definedscoringcriteriatoevaluatetheperformanceoftest-takersbasedoncertainfeatures,suchasintonation,stress,rhythm,orpauses.Statisticalmodels,suchassupportvectormachines(SVM),hiddenMarkovmodels(HMM),orneuralnetworks(NN),arealsocommonlyusedtoanalyzelargedatasetsofspeechfeaturesandpredictscores.Recently,deeplearningmodels,suchasconvolutionalneuralnetworks(CNN),recurrentneuralnetworks(RNN),ortransformernetworks,haveachievedstate-of-the-artperformanceinmanynaturallanguageprocessing(NLP)tasks,includingspeechrecognition,naturallanguageunderstanding,ormachinetranslation.Thesemodelscanextracthigh-levelabstractfeaturesfromspeechsignalsandcapturelong-termdependencies.However,mostoftheseapproachesfocusonindividualfeaturesanddonotconsidertheinterrelationshipsamongthem,whichcanlimittheirrobustnessandgeneralizability. Methodology Toovercomethelimitationsofpreviousapproaches,thispaperproposesamulti-featurefusion-basedEnglishoralexamautomaticscoringsystemthatintegratesdifferentfeaturesofspeech,suchasprosody,syntax,semantics,anddiscourse.Theproposedsystemco

快乐****蜜蜂
实名认证
内容提供者


最近下载