

如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
一类具有Allee效应的偏害系统的稳定性分析 Introduction: Alleeeffectreferstothephenomenonofdecreasedpopulationgrowthrateorextinctionthresholdatlowpopulationdensities.Thiseffectarisesfromchangesinecologicalinteractionsorfeedbackprocessesthatcreateapositivefeedbackloopleadingtoextinctionofthepopulation.Thiseffecthasbeenobservedinmanyspecies,includingplants,animals,andmicroorganisms.Inthispaper,wewilldiscussthestabilityanalysisofatypeofpartiallypredator-preysystemwithAlleeeffect. Concepts: Theproposedmodelconsistsoftwospecies,apredatorandaprey,interactingwitheachother.Thepreypopulationgrowslogistically,whilethepredatorpopulationispartiallydependentontheprey.Theinteractionbetweenthetwospeciesisbasedonpredator-preydynamicequations.TheAlleeeffectisincludedinthemodelbyassumingthatthepreygrowthratedecreaseswithdecreasingpreydensity. Model: LetusconsidertwovariablesXandYrepresentingpredatorandpreypopulation,respectively.Themodelequationforthepredatorpopulationcanbewrittenas: dX/dt=mXY/(a+Y)-dX Wheremisthemaximumpredatorgrowthrate,aisthepredatorpopulationdensityatwhichthepredatorgrowthrateishalfofthemaximumvalue,anddisthepredatormortalityrate,whichisassumedtobedensity-independent. Similarly,themodelequationforthepreypopulationcanbewrittenas: dY/dt=rY(1-Y/K)-hY/(1+bY) Whereristheintrinsicgrowthrateofthepreypopulation,Kisthecarryingcapacityoftheenvironment,histhepreyharvestrate,andbistheAlleethresholddensity,belowwhichthepreygrowthratedecreasessharply. StabilityAnalysis: Toestablishthestabilityofthesystem,weneedtofindtheequilibriumpointsofthemodel.BysettingthederivativeofbothXandYtozero,weobtainthefollowingequations: mXY/(a+Y)-dX=0...(1) rY(1-Y/K)-hY/(1+bY)=0...(2) Solvingequations(1)and(2),wegettwoequilibriumpoints,P1(0,0)andP2((aKry)/(my+bh),K(ry-d)/(hy+bm)). Toestablishthestabilityoftheseequilibriumpoints,weneedtocalculatetheJacobianmatrixofthesystemandfinditseigenvalues.TheJacobianmatrixisgivenby: J=[[mY/(a+Y),mX/(a+Y)],[-rh/(1+bY)^2,h(K-bY)/(1+bY)^2-r/K]] AtequilibriumpointP1(0,0),theJacobian

快乐****蜜蜂
实名认证
内容提供者


最近下载