

如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
一种低频振荡主要振荡模式识别方法 Title:AReviewonLow-FrequencyOscillationModeIdentificationMethods Abstract: Low-frequencyoscillations(LFOs)areacommonphenomenoninpowersystemsthatcanleadtoinstabilityandevenblackouts.Accurateidentificationofthemainoscillationmodesiscrucialforeffectivecontrolandmitigationoftheseoscillations.Thispaperpresentsacomprehensivereviewofvariousmethodsforidentifyingthemainoscillationmodesinlow-frequencyoscillations. 1.Introduction Low-frequencyoscillationsarecharacterizedbytheirlongperiodandlargeamplitude,typicallyrangingfrom0.1to2Hz.Theseoscillationsareprimarilycausedbyinteractionsbetweentheelectromechanicaldynamicsofgeneratorsandthepowersystemnetwork.Identifyingthemainoscillationmodesisessentialforpowersystemstabilityassessmentandcontrol.ThispaperaimstoprovideanoverviewofthedifferentmethodsusedforLFOmodeidentification. 2.FrequencyDomainMethods Frequencydomainmethods,suchasPowerSpectralDensity(PSD)analysisandPronyanalysis,arecommonlyusedforLFOmodeidentification.PSDanalysishelpsinidentifyingthedominantfrequenciesoftheoscillations,whilePronyanalysisprovidesestimatesofthemodalparameterslikefrequency,damping,andamplitude.Thesemethodsarebasedontheassumptionthattheoscillationscanberepresentedbyasumofsinusoidalcomponents. 3.Time-DomainMethods Time-domainmethods,suchasEigensystemRealizationAlgorithm(ERA)andsubspace-basedmethods,areanotherclassoftechniquesforLFOmodeidentification.ERAestimatesthesystemmatricesbyfittingastate-spacemodeltothemeasuredresponsedata.Subspace-basedmethodsusesubspacetechniques,likeSingularValueDecomposition(SVD),toestimatetheoscillationmodesfromtheinput-outputdata. 4.Wavelet-basedMethods Wavelet-basedmethodshavegainedpopularityinrecentyearsduetotheirabilitytoanalyzesignalsinbothfrequencyandtimedomainssimultaneously.WaveletTransform(WT)andContinuousWaveletTransform(CWT)arecommonlyemployedforLFOmodeidentification.Thesemethodsprovidetime-frequencyrepresentationsoftheoscillations,makingthemsuitableforidentifyingnon-stationarymodes. 5.ArtificialInte

快乐****蜜蜂
实名认证
内容提供者


最近下载