

如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
一种基于卷积神经网络的LFM信号超低副瓣脉冲压缩方法(英文) Title:AConvolutionalNeuralNetwork-BasedLFMSignalPulseCompressionMethodforUltra-LowSidelobe Abstract: Pulsecompressiontechniquesplayacrucialroleinradarsystemstoenhancetherangeresolutionandreducesidelobelevels.Inthispaper,weproposeanovelpulsecompressionmethodbasedonConvolutionalNeuralNetwork(CNN)forLinearFrequencyModulated(LFM)signalstoachieveultra-lowsidelobelevels.TheproposedapproachtakesadvantageofthepowerfulfeatureextractioncapabilitiesofCNNstoimprovethesidelobesuppressionperformanceofLFMpulsecompression. 1.Introduction Pulsecompressionisanimportantprocessinradarsystemstoimproverangeresolutionandreducesidelobelevelsinordertodistinguishtargetswithhighprecision.ThetraditionalapproachforLFMpulsecompressionisbasedonmatchedfilteringtechniques,whichhavelimitationsintermsofsidelobesuppressionability.Inrecentyears,deeplearningtechniques,especiallyConvolutionalNeuralNetworks(CNNs),haveachievedremarkablesuccessinvarioussignalprocessingtasks.Inthispaper,weproposeaCNN-basedpulsecompressionmethodforLFMsignals,aimingtoachieveultra-lowsidelobelevelsandimprovedtargetdetectionperformance. 2.LFMSignalPulseCompression 2.1LFMSignalBasics WeprovideabriefoverviewofLFMsignals,includingtheirmathematicalrepresentationandproperties. 2.2TraditionalMatchedFiltering WediscussthetraditionalmatchedfilteringtechniqueforLFMpulsecompression,highlightingitslimitationsinsidelobesuppression. 3.ConvolutionalNeuralNetworksforPulseCompression 3.1CNNArchitecture WeintroducethearchitectureoftheCNNusedforpulsecompression,discussingitslayersandtheirfunctions. 3.2TrainingDataPreparation Wedescribetheprocessofpreparingthetrainingdata,includingthegenerationofLFMpulsesamplesandthesimulationofdifferentnoiseandinterferenceconditions. 3.3TrainingandOptimization WeexplainthetrainingprocessoftheCNNmodel,includingthelossfunction,trainingalgorithm,andoptimizationtechniques. 4.ExperimentalResults 4.1DatasetDescription Wepresentthedatasetusedforevaluation,includingthesize,composition,andno

快乐****蜜蜂
实名认证
内容提供者


最近下载