一种基于卷积神经网络的LFM信号超低副瓣脉冲压缩方法(英文).docx 立即下载
2024-12-04
约3.3千字
约2页
0
10KB
举报 版权申诉
预览加载中,请您耐心等待几秒...

一种基于卷积神经网络的LFM信号超低副瓣脉冲压缩方法(英文).docx

一种基于卷积神经网络的LFM信号超低副瓣脉冲压缩方法(英文).docx

预览

在线预览结束,喜欢就下载吧,查找使用更方便

5 金币

下载文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

一种基于卷积神经网络的LFM信号超低副瓣脉冲压缩方法(英文)
Title:AConvolutionalNeuralNetwork-BasedLFMSignalPulseCompressionMethodforUltra-LowSidelobe
Abstract:
Pulsecompressiontechniquesplayacrucialroleinradarsystemstoenhancetherangeresolutionandreducesidelobelevels.Inthispaper,weproposeanovelpulsecompressionmethodbasedonConvolutionalNeuralNetwork(CNN)forLinearFrequencyModulated(LFM)signalstoachieveultra-lowsidelobelevels.TheproposedapproachtakesadvantageofthepowerfulfeatureextractioncapabilitiesofCNNstoimprovethesidelobesuppressionperformanceofLFMpulsecompression.
1.Introduction
Pulsecompressionisanimportantprocessinradarsystemstoimproverangeresolutionandreducesidelobelevelsinordertodistinguishtargetswithhighprecision.ThetraditionalapproachforLFMpulsecompressionisbasedonmatchedfilteringtechniques,whichhavelimitationsintermsofsidelobesuppressionability.Inrecentyears,deeplearningtechniques,especiallyConvolutionalNeuralNetworks(CNNs),haveachievedremarkablesuccessinvarioussignalprocessingtasks.Inthispaper,weproposeaCNN-basedpulsecompressionmethodforLFMsignals,aimingtoachieveultra-lowsidelobelevelsandimprovedtargetdetectionperformance.
2.LFMSignalPulseCompression
2.1LFMSignalBasics
WeprovideabriefoverviewofLFMsignals,includingtheirmathematicalrepresentationandproperties.
2.2TraditionalMatchedFiltering
WediscussthetraditionalmatchedfilteringtechniqueforLFMpulsecompression,highlightingitslimitationsinsidelobesuppression.
3.ConvolutionalNeuralNetworksforPulseCompression
3.1CNNArchitecture
WeintroducethearchitectureoftheCNNusedforpulsecompression,discussingitslayersandtheirfunctions.
3.2TrainingDataPreparation
Wedescribetheprocessofpreparingthetrainingdata,includingthegenerationofLFMpulsesamplesandthesimulationofdifferentnoiseandinterferenceconditions.
3.3TrainingandOptimization
WeexplainthetrainingprocessoftheCNNmodel,includingthelossfunction,trainingalgorithm,andoptimizationtechniques.
4.ExperimentalResults
4.1DatasetDescription
Wepresentthedatasetusedforevaluation,includingthesize,composition,andno
查看更多
单篇购买
VIP会员(1亿+VIP文档免费下)

扫码即表示接受《下载须知》

一种基于卷积神经网络的LFM信号超低副瓣脉冲压缩方法(英文)

文档大小:10KB

限时特价:扫码查看

• 请登录后再进行扫码购买
• 使用微信/支付宝扫码注册及付费下载,详阅 用户协议 隐私政策
• 如已在其他页面进行付款,请刷新当前页面重试
• 付费购买成功后,此文档可永久免费下载
全场最划算
12个月
199.0
¥360.0
限时特惠
3个月
69.9
¥90.0
新人专享
1个月
19.9
¥30.0
24个月
398.0
¥720.0
6个月会员
139.9
¥180.0

6亿VIP文档任选,共次下载特权。

已优惠

微信/支付宝扫码完成支付,可开具发票

VIP尽享专属权益

VIP文档免费下载

赠送VIP文档免费下载次数

阅读免打扰

去除文档详情页间广告

专属身份标识

尊贵的VIP专属身份标识

高级客服

一对一高级客服服务

多端互通

电脑端/手机端权益通用