

如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
利用DBSCAN优化船舶领域算法的实时碰撞预警模型 Title:OptimizationofReal-timeCollisionWarningModelintheMaritimeDomainusingDBSCAN Abstract: Inthemaritimedomain,thepreventionofcollisionsbetweenshipsisofparamountimportancetoensurethesafetyofcrew,passengers,andcargo.ThispaperproposestheutilizationofDensity-BasedSpatialClusteringofApplicationswithNoise(DBSCAN)algorithmtooptimizereal-timecollisionwarningmodelsinthemaritimedomain.ByemployingDBSCAN,themodelcaneffectivelyhandlethedenseandnoisyshipdata,accuratelyidentifypotentialcollisionthreats,andprovidetimelywarnings.Theexperimentalresultsdemonstratetheeffectivenessandefficiencyoftheproposedapproachinenhancingcollisiondetectionandimprovingmaritimesafety. 1.Introduction Theincreaseinmaritimetraffichashighlightedtheneedforeffectivecollisionwarningsystemstopreventaccidentsatsea.Traditionalcollisionwarningmodelsbasedonsimplegeometricrulesoftenfailtoconsidertheinherentcomplexitiesanddynamicspresentinshiptrafficpatterns.TheDBSCANalgorithm,knownforitsabilitytocopewithnoiseanddensityvariations,offersapromisingsolutiontooptimizethepredictionaccuracyandreducefalsealarmsincollisionwarningsystems. 2.Background 2.1ShipTrafficPatternAnalysis Understandingshiptrafficpatternsiscrucialforpredictingcollisionthreatsaccurately.Analyzingshiptrajectories,speed,andcourseinformationhelpsinidentifyingcriticalareaspronetocongestionandpotentialcollisionrisks. 2.2DBSCANAlgorithm DBSCAN,adensity-basedclusteringalgorithm,groupsdatapointsbasedontheirspatialdensity.Itovercomesthelimitationsoftraditionalclusteringalgorithmsandiscapableofhandlingnoiseandvaryingdensityregionseffectively. 3.Methodology Theproposedoptimizationofthereal-timecollisionwarningmodelinthemaritimedomaininvolvesthefollowingsteps: 3.1DataPreprocessingandFeatureExtraction Rawshiptrajectorydata,includingposition,speed,andcourse,arecollectedandpreprocessedtoremovenoise,outliers,andredundantinformation.Relevantfeatures,suchasrelativespeed,distance,andpossiblecollisionriskindicators,areextracted. 3.2DBSCAN-Base

快乐****蜜蜂
实名认证
内容提供者


最近下载