

如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
基于BP神经网络的供热机组低压缸质量流量在线监测方法 Title:OnlineMonitoringMethodforQualityFlowRateofLow-PressureCylinderinHeatingUnitbasedonBPNeuralNetwork Abstract: Accurateandefficientmonitoringofthequalityflowrateinthelow-pressurecylinderofaheatingunitisessentialforensuringoptimalperformanceandenergyefficiency.Inthispaper,weproposeanovelonlinemonitoringmethodbasedontheBack-Propagation(BP)neuralnetwork.Thismethodutilizeshistoricaloperatingdatatotraintheneuralnetworktopredictthequalityflowrate,enablingthereal-timemonitoringanddetectionofanydeviationsfromnormaloperation.Theproposedmethodshowspromisingresultsintermsofaccuracyandcanbeeasilyintegratedintoexistingheatingsystems. 1.Introduction Thelow-pressurecylinderplaysacrucialroleinheatingunits,anditsperformancedirectlyimpactstheoverallefficiencyandreliabilityofthesystem.Monitoringandmaintainingthequalityflowratewithinthedesiredrangeis,therefore,acriticaltask.Traditionalmonitoringmethods,suchasphysicalsensors,oftensufferfromlimitationssuchashighcost,limitedapplicability,anddifficultyinaccuratelycapturingdynamicchanges.Incontrast,neuralnetworkshaveshowngreatpotentialinvariousfields,includingprocessmonitoringandfaultdiagnosis.Therefore,thispaperproposesaBPneuralnetwork-basedonlinemonitoringmethodspecificallydesignedformonitoringthequalityflowrateinthelow-pressurecylinderofaheatingunit. 2.Methodology Theproposedonlinemonitoringmethodcomprisesthreemainsteps:datapreprocessing,BPneuralnetworktraining,andonlinemonitoring. 2.1DataPreprocessing Thequalityflowratedatacollectedfromvarioussensorsarepreprocessedtoremovenoiseandoutliers.Varioustechniques,suchasmovingaverageandKalmanfiltering,canbeemployedtoensuretheaccuracyandintegrityofthedata. 2.2BPNeuralNetworkTraining Thepreprocesseddataaredividedintoatrainingsetandavalidationset.ThetrainingsetisusedtotraintheBPneuralnetworkwhilethevalidationsetisusedtooptimizethenetworkparametersandpreventoverfitting.TheBPneuralnetworkconsistsofaninputlayer,oneormorehiddenlayers,andanoutputlayer.Thenumberofnodesineac

快乐****蜜蜂
实名认证
内容提供者


最近下载