

如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
基于GA-LSSVM与ARIMA组合的短期风电功率预测 Title:Short-termWindPowerForecastingusingGA-LSSVMandARIMAHybridModel Abstract: Windpowerforecastingplaysavitalroleintheefficientoperationandmanagementofwindfarms.Accurateshort-termwindpowerforecastscanfacilitategridintegration,reduceoperationalcosts,andoptimizeenergyscheduling.TheaimofthisstudyistoproposeahybridmodelcombiningGeneticAlgorithm(GA)optimizedLeastSquaresSupportVectorMachine(LSSVM)andAutoregressiveIntegratedMovingAverage(ARIMA)forshort-termwindpowerforecasting.Theproposedmodeltakesadvantageofthestrengthsofbothapproachestoimprovetheaccuracyandreliabilityofwindpowerpredictions.Theperformanceofthehybridmodelisevaluatedusingreal-worldwindpowerdata,andtheresultsarecomparedwithindividualGA-LSSVMmodelsandARIMAmodels. 1.Introduction: Windenergyhasgainedsignificantimportanceasacleanandrenewablesourceofpowergeneration.However,itsintermittentandvariablenatureposesachallengeforintegratingwindpowerintotheelectricalgrid.Accurateforecastingofwindpowerfluctuationsisessentialforefficientgridmanagement,energyscheduling,andeconomicoperationofwindpowerplants.Severalforecastingtechniqueshavebeendevelopedovertheyears,includingstatisticalmodels,machinelearningapproaches,andhybridmodels.ThispaperfocusesonthedevelopmentofahybridGA-LSSVMandARIMAmodelforshort-termwindpowerforecasting. 2.LiteratureReview: Thissectionpresentsareviewoftheexistingliteratureonwindpowerforecastingtechniques.Variousstatisticalmodels,suchasARIMA,havebeenwidelyusedforcapturingthelineardependenciesinwindpowertimeseriesdata.Machinelearningalgorithms,includingSupportVectorMachines(SVM),ArtificialNeuralNetworks(ANN),andRandomForest(RF),havealsobeenappliedtowindpowerforecasting.Theshortcomingsofindividualmodelsmotivatetheexplorationofhybridforecastingmodels,suchascombiningSVMandARIMAorSVMwithGeneticAlgorithmsforoptimization. 3.Methodology: TheproposedhybridmodelcombinesGA-LSSVMandARIMAtoenhancetheaccuracyofshort-termwindpowerforecasting.TheARIMAcomponentcapturesthelineardependenciesan

快乐****蜜蜂
实名认证
内容提供者


最近下载