

如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
基于BP神经网络的污染场地土壤重金属和PAHs含量预测 Title:PredictionofHeavyMetalandPAHsContaminationinSoilofPollutedSitesusingBPNeuralNetwork Introduction: Soilcontaminationwithheavymetalsandpolycyclicaromatichydrocarbons(PAHs)isaglobalenvironmentalconcern.Thesepollutantscanhavedetrimentaleffectsonhumanhealthandtheecosystem,andthus,accuratepredictionoftheirconcentrationsinsoilisessentialforeffectiveremediationstrategies.Inrecentyears,artificialintelligencetechniques,suchastheBackpropagation(BP)neuralnetwork,haveemergedaspowerfultoolsforenvironmentalforecastingandmodeling.ThispaperaimstopresentacomprehensivereviewoftheuseofBPneuralnetworksforthepredictionofheavymetalandPAHscontaminationinsoilofpollutedsites. Methodology: TheBPneuralnetworkisatypeoffeed-forwardartificialneuralnetworkthatcanbeusedforbothregressionandclassificationtasks.Itconsistsofmultiplelayersofinterconnectedartificialneurons,eachwithassociatedweightsandactivationfunctions.Thenetworklearnsfromasetofinput-outputtrainingdatabyiterativelyupdatingtheweightsthroughaprocesscalledbackpropagation,whichminimizesthedifferencebetweenthepredictedandactualoutputs. TopredictheavymetalandPAHscontaminationinsoil,aBPneuralnetworkmodelcanbedevelopedbyconsideringsoilproperties(e.g.,pH,organicmattercontent,cationexchangecapacity)asinputvariablesandheavymetal/PAHsconcentrationsastargetvariables.Themodelcanbetrainedusinghistoricaldatafrompollutedsites,wheresoilsampleshavebeenanalyzedforheavymetalandPAHscontent.ThetrainedmodelcanthenbeusedtopredicttheconcentrationsofheavymetalsandPAHsinsoilsamplesfromnewsites. ResultsandDiscussion: TheaccuracyandperformanceoftheBPneuralnetworkmodelforpredictingheavymetalandPAHscontaminationinsoilcanbeevaluatedusingstatisticalmetricssuchasmeansquarederror,correlationcoefficient,androotmeansquarederror.Theresultscanbecomparedwiththoseobtainedfromotherpredictivemodels,suchasmultiplelinearregressionorsupportvectormachines,toassessthesuperiorityoftheBPneuralnetworkapproach. TheadvantagesofusingaBPneuralnetworkforthisp

快乐****蜜蜂
实名认证
内容提供者


最近下载