

如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
基于FireModule卷积神经网络的手写变造数字检测 Title:HandwrittenAdversarialDigitDetectionusingConvolutionalNeuralNetworkswithFireModule Abstract: Handwrittendigitrecognitionhaswitnessedsignificantadvancementsinrecentyears,withconvolutionalneuralnetworks(CNNs)emergingasthestate-of-the-artsolution.However,thesemodelsarevulnerabletoadversarialattacks,whereimperceptibleperturbationsareaddedtotheinputimage,causingmisclassification.Inthispaper,weproposeanovelapproachfordetectingadversarialattacksonhandwrittendigitsusingCNNswithFireModules.TheFireModuleleveragestheadvantagesofbothdepthwiseseparableconvolutionsandsqueeze-and-excitationoperationstoenhancethenetwork'srobustnessanddiscriminativeability.Experimentalresultsdemonstratetheeffectivenessofourproposedmethodindetectingadversarialattackswhilemaintaininghighaccuracyonlegitimatehandwrittendigitrecognitiontasks. Keywords:Handwrittendigitrecognition,Adversarialattacks,ConvolutionalNeuralNetworks,FireModule,Robustness 1.Introduction Handwrittendigitrecognitionplaysacrucialroleinvariousapplications,suchaspostalserviceautomation,bankcheckprocessing,anddigitclassificationforremotesensing.CNNshaveachievedremarkablesuccessinthisfieldbyeffectivelyextractingdiscriminativefeaturesfromdigitimages.However,recentresearchhasshownthatCNNsaresusceptibletoadversarialattacks,whereanattackerintentionallymanipulatestheinputimagetocausemisclassificationatinferencetime. 2.AdversarialAttacksonHandwrittenDigits Adversarialattacksonhandwrittendigitsinvolvethecreationofimperceptibleperturbationstotheinputimage,leadingtothemisclassificationofthetargetdigit.Theseperturbationsarecarefullydesignedtodeceivethenetworkwhileremainingvisuallysimilartotheoriginalimage.CommonattackmethodsincludetheFastGradientSignMethod(FGSM)andtheProjectedGradientDescent(PGD)algorithm.TheseattacksposeasignificantchallengetothedeploymentofCNNmodelsinreal-worldapplications. 3.FireModule:EnhancingRobustnessinCNNs TheFireModule,originallyproposedintheSqueezeNetarchitecture,isacompactandefficientm

快乐****蜜蜂
实名认证
内容提供者


最近下载