基于Fire Module卷积神经网络的手写变造数字检测.docx 立即下载
2024-12-05
约4.8千字
约2页
0
11KB
举报 版权申诉
预览加载中,请您耐心等待几秒...

基于Fire Module卷积神经网络的手写变造数字检测.docx

基于FireModule卷积神经网络的手写变造数字检测.docx

预览

在线预览结束,喜欢就下载吧,查找使用更方便

5 金币

下载文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于FireModule卷积神经网络的手写变造数字检测
Title:HandwrittenAdversarialDigitDetectionusingConvolutionalNeuralNetworkswithFireModule
Abstract:
Handwrittendigitrecognitionhaswitnessedsignificantadvancementsinrecentyears,withconvolutionalneuralnetworks(CNNs)emergingasthestate-of-the-artsolution.However,thesemodelsarevulnerabletoadversarialattacks,whereimperceptibleperturbationsareaddedtotheinputimage,causingmisclassification.Inthispaper,weproposeanovelapproachfordetectingadversarialattacksonhandwrittendigitsusingCNNswithFireModules.TheFireModuleleveragestheadvantagesofbothdepthwiseseparableconvolutionsandsqueeze-and-excitationoperationstoenhancethenetwork'srobustnessanddiscriminativeability.Experimentalresultsdemonstratetheeffectivenessofourproposedmethodindetectingadversarialattackswhilemaintaininghighaccuracyonlegitimatehandwrittendigitrecognitiontasks.
Keywords:Handwrittendigitrecognition,Adversarialattacks,ConvolutionalNeuralNetworks,FireModule,Robustness
1.Introduction
Handwrittendigitrecognitionplaysacrucialroleinvariousapplications,suchaspostalserviceautomation,bankcheckprocessing,anddigitclassificationforremotesensing.CNNshaveachievedremarkablesuccessinthisfieldbyeffectivelyextractingdiscriminativefeaturesfromdigitimages.However,recentresearchhasshownthatCNNsaresusceptibletoadversarialattacks,whereanattackerintentionallymanipulatestheinputimagetocausemisclassificationatinferencetime.
2.AdversarialAttacksonHandwrittenDigits
Adversarialattacksonhandwrittendigitsinvolvethecreationofimperceptibleperturbationstotheinputimage,leadingtothemisclassificationofthetargetdigit.Theseperturbationsarecarefullydesignedtodeceivethenetworkwhileremainingvisuallysimilartotheoriginalimage.CommonattackmethodsincludetheFastGradientSignMethod(FGSM)andtheProjectedGradientDescent(PGD)algorithm.TheseattacksposeasignificantchallengetothedeploymentofCNNmodelsinreal-worldapplications.
3.FireModule:EnhancingRobustnessinCNNs
TheFireModule,originallyproposedintheSqueezeNetarchitecture,isacompactandefficientm
查看更多
单篇购买
VIP会员(1亿+VIP文档免费下)

扫码即表示接受《下载须知》

基于Fire Module卷积神经网络的手写变造数字检测

文档大小:11KB

限时特价:扫码查看

• 请登录后再进行扫码购买
• 使用微信/支付宝扫码注册及付费下载,详阅 用户协议 隐私政策
• 如已在其他页面进行付款,请刷新当前页面重试
• 付费购买成功后,此文档可永久免费下载
全场最划算
12个月
199.0
¥360.0
限时特惠
3个月
69.9
¥90.0
新人专享
1个月
19.9
¥30.0
24个月
398.0
¥720.0
6个月会员
139.9
¥180.0

6亿VIP文档任选,共次下载特权。

已优惠

微信/支付宝扫码完成支付,可开具发票

VIP尽享专属权益

VIP文档免费下载

赠送VIP文档免费下载次数

阅读免打扰

去除文档详情页间广告

专属身份标识

尊贵的VIP专属身份标识

高级客服

一对一高级客服服务

多端互通

电脑端/手机端权益通用