

如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
基于CBAM和BiFPN改进YoloV5的渔船目标检测 Title:EnhancedYOLOV5-basedFishermanVesselDetectionwithCBAMandBiFPN Abstract: Fishermanvesseldetectionplaysacrucialroleinmaritimesafety,environmentalconservation,andfisherymanagement.However,itremainsachallengingtaskduetothecomplexnatureofthemarineenvironment.Inthispaper,weproposeanenhancedYOLOV5modelforfishermanvesseldetectionbyincorporatingtheChannelAttentionModule(CBAM)andBi-directionalFeaturePyramidNetwork(BiFPN).Ourmethodaimstoimprovetheaccuracy,robustness,andefficiencyoffishermanvesseldetection,leadingtobettermaritimesurveillanceandresourcemanagement. 1.Introduction Fishermenvesselsareessentialfortheglobalfishingindustry,providinglivelihoodsformillionsofpeople.However,theincreasingnumberoffishingactivitiesandthepotentialforoverfishinghaveraisedseriousconcernsaboutsustainabilityandfisherymanagement.Accurateandefficientfishermanvesseldetectionisessentialformonitoringandregulatingfishingactivities,ensuringtheprotectionofmarineecosystems.ThispaperpresentsanenhancedYOLOV5modelforimprovedfishermanvesseldetectionusingCBAMandBiFPN. 2.RelatedWork Thefieldofobjectdetectionhasseensignificantadvancementsinrecentyears,withvariousmodelsproposed,suchasYOLO,FasterR-CNN,SSD,andEfficientDet.Manyofthesemodelshavebeenappliedtofishermanvesseldetectionwithvaryingdegreesofsuccess.TheCBAMmodulefocusesonthechannelandspatialattentionmaps,enablingthemodeltoselectivelyamplifyinformativefeatures.BiFPNimprovesfeaturerepresentationbyfusingfeaturesfrommultiplelevelsofthefeaturepyramid. 3.Methodology 3.1YOLOV5 WechooseYOLOV5asourbasemodelduetoitsexcellentbalancebetweenaccuracyandefficiency.YOLOV5consistsofabackbonenetworkforfeatureextractionandapredictionheadforobjectlocalizationandclassification. 3.2CBAMIntegration WeintroducetheCBAMmoduleintothebackbonenetworkofYOLOV5toenhancefeaturerepresentation.Byincorporatingchannelandspatialattentionmaps,themodelcanfocusoninformativefeatureswhilesuppressingirrelevantones.Thishelpsthemodeltolearndiscriminativefeaturesforfisher

快乐****蜜蜂
实名认证
内容提供者


最近下载