

如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
基于CEEMD和GWO-SVR的铣削振动信号前瞻预测 Title:ProactivePredictionofMillingVibrationSignalsBasedonCEEMDandGWO-SVR Abstract: Millingvibrationisacriticalfactoraffectingmachiningefficiencyandproductquality.Earlypredictionofmillingvibrationsignalscanhelpoptimizemachiningparametersandreducetheriskoftooldamage.Inthispaper,anovelapproachbasedonthecombinationofCompleteEnsembleEmpiricalModeDecomposition(CEEMD)andGreyWolfOptimizer(GWO)withSupportVectorRegression(SVR)isproposedtoachieveproactivepredictionofmillingvibrationsignals.Theeffectivenessoftheproposedapproachisdemonstratedthroughexperimentalresultsandcomparisonwithotherpredictionmethods. 1.Introduction(200words) Millingisawidelyusedmachiningprocessinvariousindustriessuchasautomotive,aerospace,andmanufacturing.However,excessivevibrationduringmillingcanleadtoreducedtoollife,poorsurfacefinish,andincreasedmachiningtime.Therefore,accuratepredictionandcontrolofmillingvibrationsarecrucialforoptimizingmachiningperformanceandensuringproductquality. 2.LiteratureReview(400words) Severaltechniqueshavebeendevelopedforvibrationsignalprediction,includingtimedomainanalysis,frequencydomainanalysis,andmachinelearning-basedmethods.However,existingapproachesoftenfailtocapturethenonlinear,non-stationary,andnon-Gaussiancharacteristicsofmillingvibrationsignals.Toaddressthesechallenges,theCEEMDmethodcaneffectivelydecomposecomplexsignalsintointrinsicmodefunctions(IMFs)withdistinctfrequencybands. 3.Methodology(400words) Theproposedproactivepredictionframeworkconsistsoftwomaincomponents:CEEMDandGWO-SVR.First,themillingvibrationsignalisdecomposedintodifferentIMFsusingCEEMD.EachIMFrepresentsaspecificvibrationpattern.GWOisthenappliedtooptimizetheSVRparametersanddeterminethebestcombinationofhyperparametersforeachIMF.TheoptimizedSVRmodelsareusedtoforecastfuturevibrationsignals. 4.ExperimentalResults(300words) Tovalidatetheeffectivenessoftheproposedapproach,experimentaldatafrommillingtestsareused.Thepredictionperformanceisevaluatedusingmetricssuchasrootmeansquareer

快乐****蜜蜂
实名认证
内容提供者


最近下载