

如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
基于BP神经网络的潜浮式无人船水动力性能分析及阻力预测(英文) Title:AnalysisofHydrodynamicPerformanceandResistancePredictionofaSubmarine-likeUnmannedSurfaceVesselbasedonBPNeuralNetwork Abstract: Thispaperpresentsananalysisofthehydrodynamicperformanceandresistancepredictionofasubmarine-likeunmannedsurfacevessel(USV).ThepaperproposestheuseofaBackpropagation(BP)neuralnetworkformodelingthehydrodynamicforcesandpredictingtheresistanceoftheUSVindifferentworkingconditions.Themainfocusliesonthedeterminationofthehydrodynamiccoefficientsandthedevelopmentofareliableresistancepredictionmodel. 1.Introduction: Withtheincreasingdemandforautonomousmaritimemissions,unmannedsurfacevesselshavegainedsignificantattention.However,thehydrodynamiccharacteristicsandresistancepredictionofsubmarine-likeUSVs,whichoperatepartiallysubmerged,havenotbeenthoroughlystudied.ThisresearchaimstofillthisgapbyutilizingBPneuralnetworks. 2.LiteratureReview: ThissectionpresentsacomprehensivereviewoftheexistingliteratureonhydrodynamicsofUSVsandtheapplicationofBPneuralnetworksinshipresistanceprediction.Ithighlightsthelimitationsandchallengesinexistingresearch,motivatingtheproposedapproachinthispaper. 3.Methodology: Theproposedmethodologyconsistsofthreemainsteps:datacollection,modeltraining,andresistanceprediction.Inthefirststep,comprehensivedataontheUSV'sgeometricandenvironmentalparametersarecollected.ThesecondstepinvolvestrainingaBPneuralnetworkusingthecollecteddata,withvariousinputparametersrelatingtotheUSV'sgeometricdimensions,speed,submersionratio,andwaterdepth.Finally,thetrainedneuralnetworkisusedtopredicttheresistanceoftheUSV,consideringdifferentoperatingconditions. 4.HydrodynamicForceModeling: ThissectiondetailsthedeterminationofhydrodynamiccoefficientsfortheUSV.Throughexperimentationandnumericalanalysis,thehydrodynamiccoefficientsforlift,drag,andmomentarecalculated.ThecalculatedcoefficientsarethenusedasinputparametersfortheBPneuralnetwork. 5.ResultsandAnalysis: ThetrainedBPneuralnetworkisappliedtopredicttheresistanceoftheUSVforvario

快乐****蜜蜂
实名认证
内容提供者


最近下载