

如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
基于K-SVD-OMP和KELM组合方法的短期光伏功率预测(英文) Title:Short-termPhotovoltaicPowerPredictionBasedonK-SVD-OMPandKELMCombinationMethod 1.Introduction(approx.200words) Theadvancementinphotovoltaic(PV)technologyhasledtotherapidgrowthofsolarenergyasamajorrenewableenergysource.AccurateandreliablepredictionofPVpoweroutputiscrucialformanagingandintegratingsolarenergyintothepowergrid.Short-termPVpowerpredictionplaysacrucialroleingridstability,energytrading,andoptimaloperationofpowersystems.ThispaperproposesanovelcombinationmethodofK-SVD-OMP(K-SingularValueDecomposition-OrthogonalMatchingPursuit)andKELM(KernelExtremeLearningMachine)forshort-termPVpowerprediction. 2.LiteratureReview(approx.300words) Manytraditionalforecastingtechniques,suchasautoregressiveintegratedmovingaverage(ARIMA)andartificialneuralnetworks(ANN),havebeenwidelyusedforPVpowerprediction.However,thesetechniquesoftenfacechallengesindealingwithnon-linearity,high-dimensionaldata,andcomplexpatternspresentinPVpowertimeseries.Toovercomethesechallenges,recentstudieshavefocusedontheintegrationofadvancedmachinelearningalgorithmsandsignalprocessingtechniques. OnepopulartechniqueistheK-SVD-OMP,whichcombinessparsecodingwithdictionarylearning.Ithasshownpromisingresultsinvarioussignalprocessingapplications.Anotheradvancedalgorithm,KELM,basedonextremelearningmachine(ELM),providesefficientandaccuratepredictionsbymappinginputdataintoahigh-dimensionalfeaturespace. 3.Methodology(approx.400words) Theproposedmethodconsistsoftwomainsteps:trainingandprediction.Inthetrainingphase,theK-SVD-OMPalgorithmisappliedtodecomposethePVpowertimeseriesintoasparserepresentationusingalearneddictionary.TheK-SVD-OMPmethodoptimizesthedictionaryandobtainsasparsecoefficientmatrixforthetrainingdata. Inthepredictionphase,thesparserepresentationobtainedfromthetrainingphaseisfedintotheKELMmodel.KELMmapsthesparserepresentationintoahigh-dimensionalfeaturespaceusingakernelfunction.Theregressionmodelisthentrainedonthemappeddatatopredicttheshort-termPVpoweroutput. 4.Experime

快乐****蜜蜂
实名认证
内容提供者


最近下载