

如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
基于CNN-BiGRU-Attention的非侵入式负荷分解 Title:Non-IntrusiveLoadDisaggregationusingCNN-BiGRU-Attention Abstract: Non-intrusiveloaddisaggregation(NILM)isavitaltechniqueinsmartgridapplicationsforextractingindividualapplianceenergyconsumptionfromaggregatedpowersignals.Itenablesuserstomonitorandanalyzeenergyusageatanappliancelevelwithoutrequiringanyadditionalhardware.Thispaperproposesanovelapproach,combiningConvolutionalNeuralNetworks(CNN),BidirectionalGatedRecurrentUnits(BiGRU),andAttentionmechanisms,toaccuratelydisaggregateloads.Theproposedmodelachievesbetterperformanceintermsofaccuracyandcomputationalefficiencycomparedtoexistingmethods.Experimentalresultsonpublicdatasetsdemonstratethesignificantpotentialoftheproposedapproachforreal-worldapplications. 1.Introduction Theunderstandingandmanagementofindividualappliancelevelenergyconsumptionisessentialforoptimizingenergyusageandimprovingenergyefficiency.However,obtainingsuchdetailedinformationusuallyrequirestheinstallationofmultiplesensorsoneachappliance,whichisimpracticalandintrusive.Non-intrusiveloaddisaggregation(NILM)techniquesaimtoovercomethislimitationbydisaggregatingappliance-levelenergyconsumptionfromtheaggregatedpowersignaloftheentirehousehold. 2.RelatedWork SeveralNILMmethodshavebeenproposedintheliterature,includingsignalprocessing-basedmethods,statisticalmethods,andmachinelearning-basedmethods.Recentadvancementsindeeplearninghavealsoledtothedevelopmentofneuralnetwork-basedNILMmodelswithimprovedaccuracyandflexibility. 3.ProposedMethod ThissectionpresentstheproposedCNN-BiGRU-Attentionmodelfornon-intrusiveloaddisaggregation.Themodelconsistsofthreemaincomponents:aCNNforfeatureextraction,aBiGRUforcapturingtemporaldependencies,andanattentionmechanismforenhancingthemodel'sfocusonrelevantappliance-specificfeatures. 4.ExperimentalSetup Toevaluatetheperformanceoftheproposedmodel,experimentswereconductedonpubliclyavailabledatasetssuchasREDDandREFIT.Theperformancemetricsusedincludeaccuracy,precision,recall,andF1-score.Theresultsarec

快乐****蜜蜂
实名认证
内容提供者


最近下载