

如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
基于分段重标定的稠密卷积神经网络的分带染色体图像类型识别 Abstract: Inrecentyears,thedevelopmentofdeeplearninghasgreatlyboostedtheadvancementofimagerecognitiontasks.However,forchromosomeimagetyperecognition,duetotheuniquecharacteristicsofchromosomeimages,existingdeeplearningmethodsoftenencounterchallengesincapturingandextractingsignificantfeatures.Inthispaper,weproposeadenseconvolutionalneuralnetwork(DCNN)basedonpiecewiserecalibrationforchromosomeimagetyperecognition.TheDCNNframeworkconsistsofmultipledenseblocksandtransitionlayerswhichenableeffectivefeatureextractionthroughdenseconnectionsandcompression.Moreover,weintroduceapiecewiserecalibrationschemetoadaptivelyrecalibratetheextractedfeatures,allowingthenetworktofocusonimportantinformationindifferentregionsofthechromosomeimage.Experimentalresultsonachromosomeimagedatasetdemonstratethesuperiorityofourproposedmethodcomparedtoexistingstate-of-the-arttechniquesintermsofrecognitionaccuracyandrobustness. 1.Introduction Chromosomeimagetyperecognitionplaysacriticalroleinclinicalgeneticsandcytogeneticanalysis.Accuraterecognitionofchromosomeimagetypesisessentialfordiseasediagnosis,geneticcounselingandresearch.Duetotheuniquecharacteristicsofchromosomeimages,suchascomplexstructuresandvariousstainingpatterns,theidentificationofchromosomeimagetypesremainschallenging. 2.RelatedWork Traditionalmethodsforchromosomeimagetyperecognitionrelyonhandcraftedfeaturesandclassifiers.However,thesemethodssufferfromlimitationsinfeaturerepresentationandlackrobustness.Withtheemergenceofdeeplearning,convolutionalneuralnetworks(CNNs)haveshownpromisingresultsinvariousimagerecognitiontasks.DenseNetisapopularCNNarchitecturethatintroducesdenseconnectionstoenhancefeaturereuseandgradientflow. 3.ProposedMethod Inthispaper,weproposeadenseconvolutionalneuralnetwork(DCNN)basedonpiecewiserecalibrationforchromosomeimagetyperecognition.TheDCNNconsistsofmultipledenseblocksandtransitionlayers.Eachdenseblockcomprisesmultipledenselyconnectedconvolutionallayers,allowingforeffectivefeatureextra

快乐****蜜蜂
实名认证
内容提供者


最近下载