

如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
基于改进Q-Learning的智能船舶局部路径规划(英文) ImprovingQ-LearningforIntelligentShipLocalPathPlanning Abstract: Asthemaritimeindustryembracesautomationandunmannedtechnologies,theabilitytonavigateautonomouslyandsafelybecomescrucialforships.Localpathplanningplaysavitalroleinenablingautonomousshipstonavigatethroughcomplexanddynamicenvironments.ThispaperproposesanimprovedversionofQ-Learning,apopularreinforcementlearningalgorithm,forintelligentshiplocalpathplanning.Theproposedapproachaimstoenhancetheaccuracyandefficiencyofshippathplanning,takingintoaccountvariousenvironmentalfactorsandshipdynamics.ExperimentalresultsdemonstratetheeffectivenessandsuperiorityoftheproposedmethodcomparedtotraditionalQ-Learningalgorithms. 1.Introduction: Autonomousshipnavigationhasgainedsignificantattentioninrecentyearsduetoitspotentialtorevolutionizethemaritimeindustry.Localpathplanning,whichinvolvesdeterminingthebestpathforashiptonavigatethroughobstaclesandreachitsdestination,isacriticalcomponentofautonomousshipnavigation.Q-Learning,apopularreinforcementlearningalgorithm,hasbeenwidelyusedforpathplanninginvariouscontexts.However,traditionalQ-Learningalgorithmsoftenoverlookimportantenvironmentalfactorsandshipdynamics,leadingtosuboptimalpathplanningsolutions.Therefore,amodifiedandimprovedversionofQ-Learningisproposedinthispapertoaddresstheselimitationsandimproveshiplocalpathplanningefficiency. 2.RelatedWork: Thissectionreviewsexistingapproachesandstudiesrelatedtoshiplocalpathplanning.Traditionalmethods,suchaspotentialfields,sufferfromthelocalminimumproblemandmaynotprovideoptimalsolutions.Machinelearningandreinforcementlearningtechniques,includingQ-Learning,havebeenemployedtoaddressthisissue.However,thesealgorithmsoftenlacktheabilitytoconsiderdynamicenvironmentalfactorsandshipcharacteristicsadequately. 3.ProposedMethod: TheproposedmethodimprovesupontraditionalQ-Learningalgorithmsbyincorporatingadditionalenvironmentalfactorsandshipdynamicsduringtheplanningprocess.Firstly,amorecomprehensivestaterepresentationisde

快乐****蜜蜂
实名认证
内容提供者


最近下载