

如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
基于深度学习的用户头像多标签分类 Title:Multi-LabelClassificationofUserAvatarsbasedonDeepLearning Abstract: Theexponentialgrowthofinternetusershasledtoanever-increasingpresenceofuseravatarsacrosssocialmediaplatformsandonlineplatforms.Useravatarsserveasvisualrepresentationsofindividualsandcontributetotheironlineidentity.Therefore,theaccurateclassificationofuseravatarsbasedonmultiplelabelsisbecomingincreasinglyimportant.Thispaperinvestigatestheapplicationofdeeplearningtechniquesformulti-labelclassificationofuseravatars.Specifically,weproposeanoveldeeplearningarchitecturethatcombinesconvolutionalneuralnetworks(CNN)andrecurrentneuralnetworks(RNN)toachieveimprovedaccuracyandrobustnessinmulti-labelclassification.Comprehensiveexperimentsareconductedonalarge-scaledatasetofuseravatars,andtheresultsdemonstratetheeffectivenessandsuperiorityofourproposedapproachcomparedtotraditionalmethods. 1.Introduction 1.1Background Withthegrowingpopularityofsocialmediaplatforms,useravatarshavebecomeanessentialaspectofindividuals'onlinepresence.Avatarscanrangefromphotographstocustomizeddigitalartworkorcartoonrepresentations.Theseavatarsprovidevisualinformationaboutusers,suchasgender,age,interests,andmore.Accuratelyclassifyinguseravatarsbasedonmultiplelabelsnotonlyenhancestheuserexperiencebutalsoenablespersonalizedcontenttargetingandbetterunderstandingofuserbehavior. 1.2ProblemStatement Thecomplexityanddiversityofuseravatarsposechallengesforaccuratemulti-labelclassification.Useravatarscanexhibitvariationsinpose,expression,lighting,andbackground,makingitdifficulttoextractmeaningfulfeatures.Additionally,asingleavatarcanrepresentmultiplelabelssimultaneously,makingtraditionalsingle-labelclassificationmethodsinadequate. 2.RelatedWork Thissectionprovidesacomprehensivereviewoftheexistingapproachesforimageclassificationandspecificallyfocusesonmulti-labelclassification.Traditionalmethods,suchasSupportVectorMachines(SVM)andDecisionTrees,havelimitationsindealingwiththehighdimensionalityandcomplexityofuseravatars.Recenta

快乐****蜜蜂
实名认证
内容提供者


最近下载