

如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
基于改进SwinTransformer的森林火灾检测算法 Title:ForestFireDetectionAlgorithmbasedonImprovedSwinTransformer Introduction: Forestfiresposeasignificantthreattotheenvironment,biodiversity,andhumanlives.Earlydetectionandpromptresponsearecrucialinmitigatingtheimpactofsuchdisasters.Withtherecentadvancementsincomputervisionanddeeplearning,theapplicationofartificialintelligencetechniquesforforestfiredetectionhasgainedsignificantattention.Inthispaper,weproposeanimprovedSwinTransformer-basedalgorithmforforestfiredetection,aimingtoachievehigheraccuracyandefficiencyinidentifyingandlocalizingfireincidents. 1.Background: 1.1ForestFireDetection: Forestfiredetectionplaysavitalroleinmitigatingthedamagecausedbywildfires.Earlydetectionallowsfortimelyinterventionandfirefighting.Varioustechniques,includingsatelliteimageryanalysisandground-basedmonitoringsystems,havebeenemployedforforestfiredetection.However,thesetraditionalmethodsoftensufferfromlimitationsintermsofaccuracy,efficiency,andreal-timemonitoringcapabilities. 1.2SwinTransformer: TheSwinTransformerhasemergedasapowerfulvariantofthetransformermodel,initiallyproposedforcomputervisiontasks.Itimprovesuponthecomputationalefficiencyofthevanillatransformerwhilemaintainingitsabilitytocapturelong-rangedependencies.TheSwinTransformerachievesthisthroughahierarchicalstructureandashiftwindowmechanism,whichdividestheinputimageintopatchesandaggregatesinformationacrossdifferentscales. 2.Methodology: 2.1DatasetPreparation: Acomprehensivedatasetcontainingimagesofforestswithandwithoutfireincidentsiscollected.Thedatasetisdividedintotraining,validation,andtestingsets,ensuringanadequaterepresentationoffirescenariosandcapturingdifferentenvironmentalconditions. 2.2Preprocessing: Theimagesarepreprocessedtoenhancethekeyfeaturesrelatedtofire,suchascolor,texture,andshape.Techniqueslikecontrastenhancement,noisereduction,andcolorcorrectionareappliedtoimprovetheoverallimagequality. 2.3SwinTransformerArchitecture: TheSwinTransformerarchitectureisadaptedforforestfiredetectio

快乐****蜜蜂
实名认证
内容提供者


最近下载