

如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
基于正则化的函数连接神经网络研究及其复杂化工过程建模应用 Abstract Function-connectionneuralnetwork(FCNN)isapowerfultoolformodelingcomplexsystemsandpredictingtheirbehaviors.Inthispaper,weinvestigatetheuseofFCNNwithregularizationformodelingcomplexchemicalprocesses.WedemonstratehowFCNNimprovesupontraditionalmethodsofprocessmodeling,suchaslinearregressionandpartialleastsquaresregression.WepresentacasestudyofapplyingFCNNtomodelacomplexchemicalprocessinthepharmaceuticalindustry.TheresultsshowthatFCNNwithregularizationoutperformsothermodelingmethodsinaccuracyandreliability. Introduction Modelingcomplexchemicalprocessesisacrucialtaskformanyindustries,suchaspharmaceuticals,polymers,andchemicals.Accuratelypredictingprocessbehaviorscanleadtosignificantcostsavingsandimprovedefficiency.Traditionalmethodsofprocessmodelingincludelinearregression,partialleastsquaresregression,andprincipalcomponentregression.Althoughthesemethodshavebeenwidelyapplied,theyhavecertainlimitationssuchasbeingrestrictedtolinearrelationshipsandbeingsensitivetooutliers. Function-connectionneuralnetwork(FCNN),alsoknownasradialbasisfunction(RBF)network,isatypeofneuralnetworkthatcanmodelbothlinearandnonlinearrelationships.FCNNconsistsofthreelayers:input,hidden,andoutput.Thehiddenlayerconsistsofradialbasisfunctions,whichareusedtotransformtheinputdataintoahigherdimensionalspace.Theoutputlayerisalinearcombinationofthehiddenlayeroutputs.Theweightsandbiasesofthenetworkaredeterminedusingatrainingalgorithm,suchasthebackpropagationalgorithm. However,FCNNcansufferfromoverfitting,whichoccurswhenthemodelistoocomplexandfitsthetrainingdatatoowell,resultinginpoorgeneralizationtonewdata.Toovercomethisproblem,regularizationtechniquescanbeappliedtothenetwork.Regularizationaddsapenaltytermtothelossfunction,whichencouragesthemodeltohavesimplerweightsandavoidsoverfitting.TwocommontypesofregularizationtechniquesareL1regularization,whichencouragessparseweights,andL2regularization,whichencouragessmallweights. Inthispaper,weinvestigatetheuseofFCNNwithregularizat

快乐****蜜蜂
实名认证
内容提供者


最近下载