如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
基于核Fisher判别分析和遗传算法的混响环境下钴结壳识别方法(英文) Title:RecognitionofCobaltStructureShellsinReverberantEnvironmentsusingKernelFisherDiscriminantAnalysisandGeneticAlgorithm Abstract: Inrecentyears,thedetectionandrecognitionofobjectsincomplexenvironmentshavebecomeincreasinglyimportantforvariousapplications.Thispaperpresentsanovelmethodforrecognizingcobaltstructureshellsinreverberantenvironments.TheproposedapproachcombinestheKernelFisherDiscriminantAnalysis(KFDA)andtheGeneticAlgorithm(GA)toenhancetheperformanceofobjectrecognitionunderreverberationeffects.Experimentalresultsdemonstratetheeffectivenessoftheproposedmethodinaccuratelyidentifyingcobaltstructureshellsinchallengingenvironments. 1.Introduction: Objectrecognitioninreverberantenvironmentsposessignificantchallengesduetothepresenceofreflections,echoes,andotherinterferenceeffects.Cobaltstructureshellsarewidelyusedinvariousindustriesandaccuratelyidentifyingthemiscrucialforqualitycontrolpurposes.Thispaperaimstodevelopanefficientandrobustmethodforrecognizingcobaltstructureshellsinthepresenceofreverberation. 2.RelatedWork: Previousresearchinobjectrecognitionhasexploredvarioustechniquessuchastemplatematching,principalcomponentanalysis,andsupportvectormachines.However,thesemethodsareoftenlimitedintheirabilitytohandlereverberantenvironments.Toaddressthisissue,recentstudieshavefocusedonfeatureextractionalgorithmsandoptimizationtechniques,suchasFisherDiscriminantAnalysisandGeneticAlgorithm. 3.Methodology: TheproposedmethodcombinesthebenefitsofKernelFisherDiscriminantAnalysis(KFDA)andGeneticAlgorithm(GA).KFDAisemployedtoextractdiscriminativefeaturesfromtheacousticsignalscapturedinthereverberantenvironment.GAisthenusedtooptimizethefeaturesubsetselectiontoenhancetherecognitionperformanceevenfurther.Theproposedmethodconsistsofthefollowingsteps: 3.1DataAcquisition: Theacousticsignalsfromvariouscobaltstructureshellsarerecordedinareverberantchamberusingamicrophonearray.Multiplemicrophonesensurethatthecollectedsignalscontainavarietyofreflections
快乐****蜜蜂
实名认证
内容提供者
最近下载