

如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
基于改进PSO-LSSVM模型的变压器绕组热点温度预测 Title:ImprovedPSO-LSSVMModelforPredictingTransformerWindingHotspotTemperature Abstract: Transformerwindinghotspottemperaturedescribesthecriticalpointoftransformeroperation,whichifexceeded,canleadtodecreasedlifespan,insulationfailure,andevencatastrophicdamage.Accuratepredictionofthehotspottemperatureisessentialformaintenanceplanningandimprovedoperationalsafety.ThispaperproposesanimprovedParticleSwarmOptimization(PSO)-LeastSquaresSupportVectorMachine(LSSVM)modelforpredictingtransformerwindinghotspottemperature.Theproposedmodeltakesintoaccountthecomplexrelationshipbetweenvariousfactorsinfluencingthetemperature,therebyenhancingpredictionaccuracy.Experimentalresultsindicatethattheproposedmodeloutperformsconventionalpredictionmodelsintermsofaccuracyandgeneralizationability,makingitaneffectivetoolforreal-timemonitoringandmanagementoftransformertemperature. 1.Introduction Transformersplayacrucialroleinpowersystems,convertingelectricalenergyfromonevoltageleveltoanother.Withincreasingelectricitydemands,theefficiencyandreliabilityoftransformersareofprimeconcern.Transformerwindinghotspottemperatureisacriticalparameterthatdirectlyaffectsitslifespanandperformance.Accuratepredictionofhotspottemperatureenablesoptimaloperationplanning,maintenancescheduling,andultimately,improvedoperationalsafety.ThispaperproposesanimprovedPSO-LSSVMmodelforpredictingtransformerwindinghotspottemperature. 2.Background 2.1TransformerWindingHotspotTemperature Transformerwindinghotspottemperatureisthehighesttemperatureamongallthewindingsandinsulationmaterials.Itisdeterminedbytheheatingeffectcausedbyelectricalcurrent,resistivelosses,andenvironmentalfactorssuchasambienttemperatureandcoolingconditions.Accuratepredictionofthehotspottemperaturecanidentifypotentialfailuresandpreventcatastrophicevents. 2.2ConventionalPredictionModels Conventionalpredictionmodels,suchasregressionanalysisandartificialneuralnetworks(ANN),havebeenwidelyemployedfortemperatureprediction.However,thesemodelso

快乐****蜜蜂
实名认证
内容提供者


最近下载